##plugins.themes.bootstrap3.article.main##

اکرم سیفی , سید مجید میرلطیفی , حسین ریاحی ,

چکیده

چکیده
تبخیر-تعرق مرجع یکی از پارامترهای مهم در مدیریت آبیاری گیاهان است. تبخیر-تعرق مرجع یک پدیده چند متغیره و پیچیده می باشد که چندین متغیر هیدرولوژیکی آن را تحت تاثیر قرار می دهند و معمولا بر مبنای پایگاه داده های هواشناسی چندساله با استفاده از مدل های نیمه تجربی برآورد می شود. اهمیت کاربردی تخمین دقیق تبخیر- تعرق مرجع، پیچیدگی و ناشناخته بودن ریاضیات پدیده، لزوم استفاده از روش های جدید داده کاوی را نشان می دهد. به همین دلیل در این مقاله، امکان برآورد تبخیر-تعرق مرجع با استفاده از مدل ترکیبی رگرسیون چندگانه و تحلیل مولفه های اصلی (MLR-PCA) بررسی شد و اهمیت نسبی متغیرهای موثر بر تبخیر-تعرق مرجع با استفاده از تحلیل عاملی مورد ارزیابی قرار گرفت. داده های هواشناسی روزانه سال های 2005-1996 ایستگاه سینوپتیک کرمان در این تحلیل استفاده شد. دو مولفه PC1 و PC2 که 80 درصد واریانس کل را شرح دادند به عنوان مولفه های اصلی و بقیه به عنوان اختلال در نظر گرفته شدند. با استفاده از مولفه های اصلی استخراج شده، مدل رگرسیون خطی چندگانه برای تخمین تبخیر-تعرق مرجع ارائه شد. آماره t برای مقدار ثابت و برای هر یک از مولفه های اصلی تعیین گردید که طبق نتایج، تمامی ضرایب در سطح 5 درصد معنی دار بودند. طبق نتایج، PC1 اهمیت بیشتری نسبت به مولفه دیگر دارد و در مرحله بعدی PC2 دارای اهمیت می باشد و بنابراین مقادیر متغیرهای شدت تابش، رطوبت نسبی، ساعات آفتابی، دمای حداقل و دمای حداکثر برای برآورد تبخیر-تعرق از اهمیت بیشتری نسبت به سایر متغیرها برخوردارند. مقادیر ضریب همبستگی روش های MLR-PCA و MLR بر اساس مبنای مقایسه ای فائو-پنمن-مانتیث در مرحله آزمون، به ترتیب 820/0 و 840/0 بدست آمد که این مقادیر اختلاف چندانی نداشته و بیانگر توانایی روش PCA کاهش تعداد متغیرهای مورد استفاده است.

واژه های کلیدی: تبخیر-تعرق مرجع، فائو- پنمن- مانتیث، رگرسیون چندگانه، تحلیل مولفه اصلی، تحلیل عاملی

جزئیات مقاله

مراجع
ارجاع به مقاله
سیفیا., میرلطیفیس. م., & ریاحیح. (2011). توسعه مدل ترکیبی رگرسیون چندگانه- تحلیل مولفه ها و عامل های اصلی (MLR-PCA) در پیش بینی تبخیر-تعرق مرجع. آب و خاک, 24(6). https://doi.org/10.22067/jsw.v0i0.7502
نوع مقاله
علمی - پژوهشی