تغییرات ویژگی‌های فیزیکی خاک مزارع دیم دشت مراغه در اثر اعمال تیمارهای خاک‌ورزی حفاظتی و سنتی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه مراغه

2 موسسه تحقیقات کشاورزی دیم کشور

چکیده

به‌منظور مطالعه اثرات خاک‌ورزی سنتی و حفاظتی بر خصوصیات فیزیکی خاک در اراضی کشاورزی دیم، تحقیقی به مدت 5 سال زراعی در مؤسسه تحقیقات دیم کشور در قالب طرح بلوک‌های کامل تصادفی با 5 تیمار خاک‌ورزی شامل: کاشت مستقیم در ته ساقه‌ها (NT1)، کاشت مستقیم در کلیه بقایا (NT2)، شخم قلمی + دیسک (CH)، کم خاک‌ورزی (MT) و شخم مرسوم (CT) در 4 تکرار به اجرا در آمد. نمونه‌برداری‌های خاک در انتهای سال پنجم برداشته شدند که این نمونه جهت آنالیز پارامترهای فیزیکی ازجمله پایداری خاکدانه‌ها (WAS)، میانگین وزنی و هندسی قطر خاکدانه­ها به روش الک تر (GMDwet و MWDwet) و الک خشک (GMDdry و MWDdry)، بعد فرکتال جرمی خاکدانه‌ها (Dm)، کربن آلی کل (TOC)، کربن آلی محلول (DOC) و جرم مخصوص ظاهری خاک استفاده شدند. نتایج نشان داد که اثر تیمارهای خاک‌ورزی بر پارامترهای MWDdry و GMDdry معنی‌دار بود. اثر متقابل روش‌های مختلف خاک‌ورزی و مکان بر روی DOC و اثر متقابل عمق و مکان بر روی جرم مخصوص ظاهری معنی‌دار بود. میزان کربن آلی محلول در تیمار خاک‌ورزی سنتی با مقدار mg g-1 74/3 در مکان اول به‌طور معنی‌داری بیشتر از سایر تیمارها (با مقادیر کمتر از mg g-1 20/3) بود. همچنین در تیمار NT1 و NT2 میانگین وزنی (به ترتیب با 25/1 و 17/1 میلی­متر) و هندسی (04/1 میلی­متر برای هر دو) قطر خاکدانه­ها اختلاف معنی‌داری با سایر تیمارها داشت. بر اساس نتایج به‌دست‌آمده توصیه می‌شود، به‌جای استفاده مداوم از خاک‌ورزی سنتی از خاک‌ورزی حفاظتی استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Changes in Physical Properties of Soils after Five Years of Application of Conventional and Conservation Tillage Practices

نویسندگان [English]

  • Mehdi Kousehlou 1
  • Mehdi Rahmati 1
  • Iraj Eskandari 2
  • Vali Feiziasl 2
1 University of Maragheh
2 Dryland Agricultural Research Institute
چکیده [English]

Introduction: Soil is one of the nonrenewable resources (in human being life time scale) that is important to be protected. Tillage operations are carried out in a variety of ways, which in general can be divided into two comprehensive classes of conventional and conservation tillage practices. The tillage has a very important impact on soil physical, chemical and biological properties. Different tillage systems can have conflicting effects on soil physical properties, which is thought to reflect the impact of different weather conditions. Therefore, it seems necessary to study the effects of different tillage practices on the soil attributes in different climatic conditions.
Materials and Methods: This experiment was conducted for five years from 2011 to 2016 in a randomized complete block design (RCBD) with repeated measurements in two different locations and four replications. The applied tillage practices included no-till in standing residue (NT1), no-till in entire residue (NT2), chisel plow plus disc harrow (CH), minimum tillage with mulch cultivator (MT) and conventional plowing with moldboard plowing (CT). The experiment was carried out at Dryland Agricultural Research Institute (DARI) in Maragheh. Soil samples were taken at the end of fifth year and then soil texture were determined by hydrometer method, weight and geometric means of aggregates diameters by wet-sieving (MWDwetو GMDwet) and dry-sieving (MWDdry GMDdry) procedures, the stability of 1 to 2 mm aggregates (WAS) by wet-sieving, total soil organic carbon (TOC) by wet oxidizing method, dissolved soil organic carbon (DOC) using carbon analyzer and mass fractal dimension aggregates using Tyler and Wheatcraft model. The soil bulk density (Db) was also measured by intact samples (from two depths of 0-15 cm and 15-30 cm) prepared from the study area using sampling cylinders with a diameter of 5 and a height of 4 cm.
Results and Discussion: In general, the results showed that the interaction of depth and location on Db was significant at 5% probability level. The measured Db in 15-30 cm was greater than the measured Db in a depth of 0-15 cm. Also, in spite of the significance of the main effects of location and tillage and the interaction of tillage-location on soil dissolved organic carbon (DOC), tillage treatments and their interaction effects on total organic carbon (TOC) were not significant. The results showed that conventional tillage, CT, had the highest amount of DOC. However, no-till in entre residue (NT2) and minimum tillage (MT) showed the lowest amount of DOC. Further, the main effects of tillage practices on MWDdry and GMDdry were significant at 5% probability level. No-till (NT1 and NT2) practices had the highest MWDdry with values of 1.17 and 1.25 mm. Tillage practices and location had no significant effect on WAS, Dm, and MWDwet and GMDwet.
Conclusion: It seems that the reason that DOC content of CT was higher than conservation tillage practices is due to the preservation of crop residues on the soil surface in conservation and no-till systems and less mixing of them with soil and consequently their less decomposition. While in conventional tillage, plant residues were mixed with soil, and the effect of biological degradation increased soil DOC. The greater MWDdry in NT1 and NT2 practices suggests that tillage, even at a minimum or reduced state, breaks down the aggregates and produces smaller particles or aggregates. It also seems that the main reason for GMDdry reduction in minimum tillage is due to the further degradation of aggregates by the tillage agent. Therefore, to better and more accurately observe the effects of different types of tillage, sampling should be done at the end of each growing season.

کلیدواژه‌ها [English]

  • Aggregates stability
  • Bulk density
  • Dissolved Organic Carbon
  • Fractal Dimension
1- Abbasi H., Khodaverdiloo H., Ghorbani Dashtaki S., and Ahmadi Moghaddam P. 2014. The effects of some tillage methods on soil physical quality index in arid and semiarid region. Journal of Agricultural Mechanization 1(2): 37-45. (In Persian with English abstract)
2- Afyuni M., and Mosadeghi M. R. 2001. Effect of tillage practices on soil physical properties and bromide translocation. Journal of Science and Technology of Agriculture and Natural Resources 5(3): 39-53. (In Persian)
3- Alvarez R., and Steinbach H. 2009. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research 104(1): 1-15.
4- Ataee A., Gorji M., and Parvizi Y. 2015. Evaluation of the suitability of fractal dimension of soil aggregates in assessing different soil management practices. Journal of Soil Researches 28(4): 701-712. (In Persian)
5- Bahrani M.J., Raufat M.H., and Ghadiri H. 2007. Influence of wheat residue management on irrigated corn grain production in a reduced tillage system. Soil and Tillage Research 94(2): 305-309.‏
6- Beare M., Hendrix P., and Coleman D. 1994. Water-stable aggregates and organic matter fractions in conventional-and no-tillage soils. Soil Science Society of America Journal 58(3): 777-786.
7- Ding Q., and Ding W. 2007. Comparing stress wavelets with fragment fractals for soil structure quantification. Soil Tillage Research 93: 316–323.
8- Eghball B., Mielke L.N., Calvo G.A., and Wilhelm W.W. 1993. Fractal description of soil fragmentation for various tillage methods and crop sequences. Soil Science Society of America Journal 57(5): 1337-1341.‏
9- Eynard A., Schumacher T.E., Lindstrom M.J., and Malo D. D. 2004. Aggregate sizes and stability in cultivated South Dakota prairie Ustolls and Usterts. Soil Science Society of America Journal 68(4): 1360-1365.
10- Gbadamosi J. 2013. Impact of different tillage practices on soil moisture content, soil bulk density and soil penetration resistance in oyo metropolis, Oyo state, Nigeria. Transnational Journal of Science and Technology 3(9): 50-57.
11- Gee G.W., and Or. D. 2002. Particle-size analysis. In: J.H. Dane and G.C. Topp, editors, Methods of soil analysis. Part 4. SSSA Book Ser. 5. SSSA Madison, WI. p. 255–293.
12- Ghaffari Nejad S.A. 2018. Long-term soil tests to evaluate soil fertility management methods. Journal Management System 5(2): 99-112.
13- Ghasemi Abaolmaleki Y., GHajar Sepanlou M., and Bahmanyar M.A. 2015. The effect of different tillage methods on some soil physical properties. Journal of Soil Researches 29(4): 309-320. (In Persian)
14- Grossman R., and Reinsch T. 2002. 2.1 Bulk density and linear extensibility. In: J.H. Dane and G.C. Topp, editors, Methods of soil analysis. Part 4. SSSA Book Ser. 5. SSSA Madison, WI. p. 201-228.
15- Gülser C. 2006. Effect of forage cropping treatments on soil structure and relationships with fractal dimensions. Geoderma,131(1-2): 33-44.‏
16- Hajabbasi M.A., Mirlohi A.F., and Sadrarhami M. 1999. Tillage effects on some physical properties of soil and maize yield in Lavark research farm. Journal of Water and Soil Science (Journal of Sciences and Technology of Agriculture and Natural Resources) 3(3): 13-24. (In Persian)
17- Ishaq M., Ibrahim M., and Lal R. 2002. Tillage effects on soil properties at different levels of fertilizer application in Punjab, Pakistan. Soil and Tillage Research 68(2): 93-99.
18- Jabro J.D., Iversen W.M., Stevens W.B., Evans R.G., Mikha M.M., and Allen B.L. 2015. Effect of three tillage depths on sugarbeet response and soil penetrability resistance. Agronomy Journal 107(4): 1481-1488.
19- Jabro J.D., Iversen W.M., Stevens W.B., Evans R.G., Mikha M.M., and Allen B.L. 2016. Physical and hydraulic properties of a sandy loam soil under zero, shallow and deep tillage practices. Soil and Tillage Research 159: 67-72.
20- Jabro J., Stevens W., Iversen W., and Evans R. 2011. Bulk density, water content, and hydraulic properties of a sandy loam soil following conventional or strip tillage. Applied engineering in agriculture 27(5): 765-768.
21- Karuma A., Mtakwa P., Amuri N., Gachene C.K., and Gicheru P. 2014. Tillage effects on selected soil physical properties in a maize-bean intercropping system in Mwala District, Kenya. International scholarly research notices, 2014: PMC4897449.
22- Kemper W.D., and Rosenau R.C. 1986. Aggregate stability and size distribution. In: Method of Soil Analysis. Part 1. Physical and Mineralogical Methods, Soil Sci. Soc. Am. Agron. 9: 425-440.
23- Khurshid K., Iqbal M., Arif M.S., and Nawaz A. 2006. Effect of tillage and mulch on soil physical properties and growth of maize. International Journal of Agriculture and Biology 8(5): 593-596.
24- Kubar K.A., Huang L., Lu J., Li X., Xue B., and Yin Z. 2018. Integrative effects of no-tillage and straw returning on soil organic carbon and water stable aggregation under rice-rape rotation. Chilean Journal of Agricultural Research 78(2): 205-215.‏
25- Kutlu T., Ersahin S., and Yetgin B. 2008. Relations between solid fractal dimension and some physical properties of soils formed over alluvial and colluvial deposits. Journal of Food, Agriculture and Environment 6(3): 445-449
26- Nelson D.W., and Sommers L.E. 1996. Total carbon, organic carbon and organic matter. In: D.L. Sparks (Ed.). Methods of Soil Analyses. Part 3. Chemical Methods. SSSA. Madison, WI. pp. 961-1010.
27- Nimmo J.R., and Perkins K.S. 2002. 2.6 Aggregate stability and size distribution. In: J.H. Dane and G.C. Topp, editors, Methods of soil analysis. Part 4. SSSA Book Ser. 5. SSSA Madison, WI. p. 317-328.
28- Olson K.R., Ebelhar S.A., and Lang J.M. 2013. Effects of 24 years of conservation tillage systems on soil organic carbon and soil productivity. Applied and Environmental Soil Science 2013.: 617504.
29- Paustian K., Collins H.P., and Paul E.A. 1997. Management controls on soil carbon: 1997, CRC Press: Boca Raton, FL, USA. p.
30- Peixoto R., Coutinho H., Madari B., Machado P., Rumjanek N., Van Elsas J., Seldin L., and Rosado A. 2006. Soil aggregation and bacterial community structure as affected by tillage and cover cropping in the Brazilian Cerrados. Soil and Tillage Research 90(1): 16-28.
31- Pirmoradian N., Sepaskhah A.R., and Hajabbasi M.A. 2005. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments. Biosystems Enginering 90(2): 227-234.
32- Prosperini N., and Perugini D. 2008. Particle size distributions of some soils from the Umbria Region (Italy): fractal analysis and numerical modelling. Geoderma 145(3-4): 185-195.‏
33- Rousta M. 2009. Effects of different tillage methods on soil organic matter content and aggregate stability. Iranian Journal of Soil Research (Formerly Soil and Water Sciences) 23(1): 61-67.
34- Sarker J.R., Singh B.P., Cowie A.L., Fang Y., Collins D., Badgery W., and Dalal R.C. 2018. Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils. Soil and Tillage Research 178: 209-223.
35- Skaggs T., Arya L., Shouse P., and Mohanty B. 2001. Estimating particle-size distribution from limited soil texture data. Soil Science Society of America Journal 65(4): 1038-1044.
36- Tyler S.W., and Wheatcraft S.W. 1992. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Science Society of America Journal 56(2): 362-369.
37- Yoder R.E. 1936. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Agronomy Journal 28(5): 337-351.
38- Zhao S.W., S J., Yang Y.H., Liu N., Wu J., and Shangguan Z. 2006. A fractal method of estimating soil structure changes under different vegetations on Ziwuling Mountains of the Loess plateau, China. China Agricaltural Science Journal 5(7): 530-538.
39- Zimmermann M., Leifeld J., and Fuhrer J. 2007. Quantifying soil organic carbon fractions by infrared-spectroscopy. Soil Biology and Biochemistry 39(1): 224-231.‏
CAPTCHA Image
دوره 33، شماره 3 - شماره پیاپی 65
مرداد و شهریور 1398
صفحه 477-478
  • تاریخ دریافت: 05 آذر 1397
  • تاریخ بازنگری: 28 اردیبهشت 1398
  • تاریخ پذیرش: 17 تیر 1398
  • تاریخ اولین انتشار: 01 شهریور 1398