##plugins.themes.bootstrap3.article.main##

الناز قدیری نفیسه سادات نقوی کامران قائدی

چکیده

هدف این پژوهش، غربال­گری باکتری­های تجزیه کننده سلولز از خاک مناطق جنگلی مازندران و ردیابی ژن رمز کننده آنزیم اندوگلوکاناز در جدایه واجد بالاترین فعالیت سلولازی بوده است. جدایه­های مولد سلولاز با استفاده از رنگ كنگورد در محیط کشت کربوکسی متیل سلولز انتخاب شدند و میزان فعالیت اندوگلوکانازی آنها با روش سنجش میزان قند احیای آزاد شده با معرف دی نیتروسالیسیلیک اسید اندازه­گیری شد. شناسایی گونه باکتری­ها از طریق تکثیر و توالی یابی 16S rDNA انجام شد. همچنین، تولید آنزیم در جدایه منتخب در شرایط رشدی مختلف مورد ارزیابی قرار گرفت. سپس در بانک ژنی توالی­های ژن اندوگلوکاناز در سویه­های مختلف گونه باکتریایی که واجد بالاترین فعالیت اندوگلوکانازی بود جستجو شد و بر اساس اطلاعات به دست آمده اقدام به طراحی پرایمر جهت تکثیر ژن گردید. توالی قطعه تکثیر شده در بانک ژنی با توالی­های موجود مقایسه شد. سنجش فعالیت آنزیم نشان داد که بالاترين فعاليت اندوگلوکانازی به ترتیب متعلق به جدایه­های باسیلوس سوبتیلیس A2 (U/min.ml 92/1)، باسیلوس سوبتیلیس B2 (U/min.ml 65/1) و باسیلوس سرئوسH3 (U/min.ml 51/1) بود. ارزیابی مولکولی ژن اندوگلوکاناز در باسیلوس سوبتیلیس B2 مشابهت 77 درصدی با ژن اندوگلوکاناز (elgSباسیلوس سوبتیلیس زیر گونه سوبتیلیس را نشان داد. همچنین بیشترین تولید اندوگلوکاناز جدایه باسیلوس سوبتیلیس B2 در غلظت 8 گرم در لیتر کربوکسی متیل سلولز، pH برابر با 7 و فقدان نمک کلرید سدیم بود. توالی ژن اندوگلوکاناز این جدایه توانمند به عنوان یک توالی جدید در این مطالعه تکثیر و خالص شد و می­تواند به منظور اهداف کلونینگ مورد استفاده قرار گیرد.

جزئیات مقاله

کلمات کلیدی

اندوگلوکاناز, باسیلوس سوبتیلیس, باکتری¬های خاک, elgS

مراجع
1- Assareh R., Zahiri H.S., and Eshghi S. 2014. Isolation and identification of native cellulose-degrading bacteria from soil. Journal of Cell and Molecular Research 27(1): 99-110. (In Persian)
2- Azizi M., and Hemmat J. 2016. Isolation of thermotolerant Isoptericola variabilis IDAH9 and optimization of its exoglucananse activity. Modares Journal of Biotechnology 7(2): 70-80. (In Persian)
3- Belda E., Sekowska A., Le Fèvre F., Morgat A., Mornico D., Ouzounis C., Vallenet D., Médigue C., and Danchin A. 2013. An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology 159(4): 757-70.
4- Brooks G.F., Butel J.S., and Morse S.A. 2010. Jawets Melnick and Adelbergs medical microbiology, McGraw Hill companies, New York.
5- Ho S.H., Li P.J., Liu C.C., and Chang J.S. 2013. Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresource Technology 145: 142-149.
6- Liang Y.L., Zhang Z., Wu M., Wu Y., and Feng J.X. 2014. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMedical Research International 512497.
7- Lynd L.R., Weimer P.J., and VanZyl W.H. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66: 506-577.
8- Mandel M., and Weber J. 1969. Exoglucanase activity by microorganisms. Advances in Chemistry 95: 391-414.
9- Menendez E., Garcia-Fraile P., and Rivas R. 2015. Biotechnological applications of bacterial cellulases. AIMS Bioengineering 2(3): 163-182.
10- Naghavi N.S., Saffari S., Zia M.A., and Ghalamkari G.R. 2012. Isolation and identification of the fungus Caecomyces from sheep rumen and optimization of its cellulolytic activity. Journal of Veterinary Research 12: 27-34. (In Persian)
11- Pandey S., Kushwah J., Tiwari R., Kumar R., Somvanshi V.S. Nain, L., and Saxena A.K. 2014. Cloning and expression of β-1, 4-endoglucanase gene from Bacillus subtilis isolated from soil long term irrigated with effluents of paper and pulp mill. Microbiology Research 169(9-10): 693-698.
12- Past S., Nazemi A., Khataminejad M.R., Mirinargesi M.S., Mousavi S., and Salehi A. 2012. Isolation and molecular identification of cellulase producing Bacillus strains from Mazandaran forests soil. Microbial Biotechnology 4(12): 1-6. (In Persian)
13- Rastogi G., Aditya B., Adhikari A., Bischoff K., Hughes S., Christopher L., and Sani R. 2010. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresource Technology 101: 8798-8806.
14- Rasul F., Afroz A., Rashid U., Mehmood S., Sughra K., and Zeeshan N. 2015. Screening and characterization of cellulase producing bacteria from soil and waste (molasses) of sugar industry. International Journal of Bioscience 6(3): 230-236.‏
15- Sethi S., Datta A., Gupta B.L., and Gupta S. 2013. Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnology, 2013:985685.
16- Singhania R.R., Adsul M., Pandey A., and Patel A.K. 2017. Cellulases In: S. Dubey et al. (ed.) Current developments in biotechnology and bioengineering. Elsevier, London.‏
17- Wang CY., Hsieh YR., Ng CC., Chan H., Lin HT., Tzeng WS., and Shyu YT. 2009. Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05. Enzyme and Microbial Technology 44: 373-9.
18- Ye M., Sun L., Yang R., Wang Z., and Qi K. 2017. The optimization of fermentation conditions for producing cellulase of Bacillus amyloliquefaciens and its application to goose feed. Royal Society Open Science 4(10): 171012.
ارجاع به مقاله
قدیریا., نقوین. س., & قائدیک. (2020). ردیابی ژن اندوگلوکاناز در باکتری¬های تجزیه کننده سلولز غربال شده از خاک¬های جنگلی مازندران، ایران . آب و خاک, 34(1), 73-83. https://doi.org/10.22067/jsw.v34i1.77293
نوع مقاله
علمی - پژوهشی