##plugins.themes.bootstrap3.article.main##

محمدرضا گودرزی رضا پیریائی میر رحیم موسوی

چکیده

بررسی­ها بر روی پیوند آب، غذا و انرژی4 یک مبنای مشترک برای پژوهشگران، ذینفعان و دولت جهت درک و مدیریت، امنیت و استفاده از روابط WEF فراهم می­کند. نمونه رابطه WEF روابط ویژه­ای را برای تحقیقات بین رشته­ای که مدیریت یکپارچه منابع آب است مهیا می­کند. هدف از این پژوهش بهره­وری مناسب از منابع آب موجود با استفاده از رویکرد آب، غذا و انرژی و با توجه به تغییرات آب­و­هوایی آتی در شهر بروجرد است. در این مطالعه از خروجی مدل HADGEM2 تحت دو سناریوي انتشار RCP2.6 و RCP8.5 مربوط به پنجمین گزارش ارزیابی هیئت بین­الدول تغییر اقلیم استفاده شد. ریزمقیاس نمایی با استفاده از مدل LARS-WG انجام شد. شهر بروجرد با نرم­افزار GIS مدل شد و رویکرد آب، غذا و انرژی برای نهایت بهره­مندی از منابع آب مورد استفاده قرار گرفت. خروجی مدل HADGEM2 تحت دو سناریویRCP2.6  و RCP8.5 نشان داد که در دوره آتی دما بین 5/1 تا 3 درجه سانتی­گراد و بارش بین 20 تا 40 میلی­متر تغییر را تجربه خواهند کرد. نتایج نشان داد حجم بارش به دست آمده از بارش 45/612612 متر مکعب در سال می‌باشد و چرخه فاضلاب 12750000 متر مکعب در سال می­باشد. بنابراین بعد از تصفیه و بازچرخانی دوباره­ی آب می‌تواند 74/60 درصد تقاضای فعلی آب شهر بروجرد را تأمین کند. می­توان از این منابع آب برای کشاورزی شهری در و یا آبیاری درختان و فضای سبز و از فاضلاب برای تولید انرژی الکتریکی در شهر استفاده کرد.

جزئیات مقاله

کلمات کلیدی

تغییرات آب¬و¬هوایی, منابع آب, مدل HADGEM2, Water-Energy-Food Nexus

مراجع
1- AGECC (UN Secretary General’s Advisory Group on Energy and Climate Change). 2010. Summary Report and Recommendations. p 13.
2- Bhaduri A., Ringler C., Dombrowski I., Mohtar R., and Scheumann W. 2015. Sustainability in the water–energy–food nexus. Water Int 40: 723–732.
3- Biswas A.K. 2004. Integrated Water Resources Management: A Reassessment. Water Int 29: 248–256.
4- Bizikova L., Roy D., Swanson D., Venema M., HenryDavid M., and McCandless M. 2013. The Water-energy-food Security Nexus: Towards a Practical Planning and Decision-support Framework For Landscape Investment and Risk Management. International Institute for Sustainable Development, Winnipeg, Canada.
5- Cai X.M., and Rosegrant M.W. 2004. Irrigation technology choices under hydrologic uncertainty: A case study from Maipo River Basin, Chile. Water Resour Res. 40, W04103, doi: 10.1029/2003WR00 2810.
6- Chapagain A.K., and Tickner D. 2012. Water Footprint: Help or Hindrance? Water Alternatives 5: 563–581.
7- Collins M., Knutti R., Arblaster J., Dufresne J.-L., Fichefet T., Friedlingstein P., Gao X., Gutowski W.J., Johns T., Krinner G., Shongwe M., Tebaldi C., Weaver A.J., and Wehner M. 2013. Long-term Climate Change: Projections, Commitmens and Irreversbility. In : Climate Change 2013: The physical Basis.Contribution of Working Group I to the Finish Assessment Report of the Intergovernmental Panel on Climate Change [Stoker T.F., Qin G.-K., Plattner M., Tignor S.K. Allen J. Boschung A. Nauels Y. Xia V. Bex and Midgley P.M. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York. USA. PP. 1045-1047.
8- FAO. 1996. Rome Declaration on World Food Security and World Food Summit Plan of Action. World Food Summit 13–17 November.
9- Global Water Partnership. 2000. Integrated Water Resources Management, Global Water Partnership. Stockholm.
10- Hamlet A.F., and Leltenmlier D.P. 2007. Effects of 20th Century warning and climate variability on flood risk in the western U. S., Water Resources Research 43: 466427.
11- Hering J.G., and Ingold K.M. 2012. Water Resources Management: What Should Be Integrated? Science 336: 1234–1235.
12- Hoekstra A.Y., Chapagain A.K., Aldaya M.M., and Mekonnen M.M. 2011. The water footprint assessment manual: setting the global standard. (London and Washington, DC, Earthscan 24: 138–142.
13- Hoff H. 2011. Understanding the Nexus. In: Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus, Stockholm Environment Institute.
14- Hubacek K., Guan D.B., Barrett J., and Wiedmann T. 2009. Environmental implications of urbanization and lifestyle change in China: Ecological and Water Footprints. J Clean Prod. 17: 1241–1248.
15- Krysanova V., Dickens C., Timmerman J., Varela-Orlega C., Schluter M., Roest K., Hantyens P., Jaspers F., Buiteveld H., Moreno E., de Pedraza Carrera J., slamova R., Martinkova M., Blanco I., Uteve P., Pringle K., Pahl-Wash C., and Kabat P. 2010. Cross comparison of climate change adaptation strategies across large river basins in Europe, Africa and Asia, Water Resources Management 24: 4121-4160.
16- Kuiper D., Zarate E., and Aldaya M. 2010. Water Footprint and Corporate Water Accounting for Resource Efficiency. United Nations Environment Programme, Nairobi.
17- Lane M.E., Kirshen P.H., and Vogel R.M. 1999. Indicators of impact of global climate change on U.S. water resources. ASCE, J. Water Resour. Planning and Manag 125(4): 194-204.
18- Leck H., Conway D., Bradshaw M., and Rees J. 2015. Tracing the Water-Energy-Food Nexus: Description, Theory and Practice. Geogr. Compass 9: 445–460.
19- Lienhard J.H., Thiel G.P., Warsinger D.M., and Banchik L.D. 2016. "Low Carbon Desalination: Status and Research, Development, and Demonstration Needs". Report of a Workshop Conducted at the Massachusetts Institute of Technology in Association with the Global Clean Water Desalination Alliance, MIT Abdul Latif Jameel World Water and Food Security Lab, Cambridge, Massachusetts.
20- Maass A., Hufschmidt M.M., Dorfman R., Thomas H.A., Marglin S.A.,and Fair G.M. 1962. Design of Water-Resource Systems: New Techniques For Relating Economic Objectives, Engineering Analysis, and Governmental Planning. Harvard University Press, Cambridge, Mass.
21- Merrey D.J. 2008. Is normative integrated water resources management implementable? Charting a practical course with lessons from Southern Africa. Phys. Chem. Earth 33: 899–905.
22- Racsko P., Szeidl L., and Semenov M. 1991. A serial approach to local stochastic weather models. Ecological Modelling 57(1): 27-41.
23- Ringler C., Bhaduri A., and Lawford R. 2013. The nexus across water, energy, land and food (WELF): potential for improved resource use efficiency? Curr. Opin. Environ. Sustain 5: 617–624.
24- Semenov M.A., Brooks R.J., Barrow E.M., and Richardson C.W. 1998. Comparison of the WGEN and LARS-WG stoch - astic weather generators in diverse climates. Clim Res10: 95–107.
25- Semenov M.A., and Brooks R.J. 1999. Spatial interpolation of the LARS-WG weather generator in Great Britain. Climate Research 11: 137-148.
26- Semenov M.A., Barrow E.M., and LARS-WG A. 2002. A Stochastic Weather Generation for Use in Climate Impact Studies LARS-WG 35: 392-444.
27- Smol J.P. 2012. Climate Change: A planet in flux. Nature 483: 12–15.
28- Statistical Yearbook of Lorestan Province. 2002. Lorestan Housing and Urban Development Department (In Persian)
29- Sun S.K., Wu P.T., Wang Y.B., and Zhao X.N. 2013. The virtual water content of major grain crops and virtual water flows between regions in China. Journal of Science Food and Agriculture 93: 1427–1437.
30- UNDP. 2014. Human Development Report. http://www.undp.org.
31- United Nations. 2012. Rio+20 United Nations Conference on Sustainable Development. United Nations. Rio de Janeiro, Brazil.
32- Vince G. 2010. Getting More Drops to the Crops. Science 327: 800–800.
33- Weitz N., Nilsson M., and Davis M. 2014. A nexus approach to the post-2015 agenda: formulating integrated water, energy, and food SDGs. SAIS Rev. Johns Hopkins University Press. 34: 37–50.
34- Wicaksono S.A., Russell J.M., Holbourn A., and Kuhnt W. 2017. Hydrological and vegetation shifts in the Wallacean region of central Indonesia since the Last Glacial Maximum, Quat. Sci. Rev. 157:152-163.
35- Wilby R.L., and Harris I. 2006. A framework for assessing unceruinties in climate change impacts: low-flow scenarios for the river Thames, Water Resources Research. vol. 42. wo2419.
36- Xu D., Liu Y., Li Y.N., and Gong S.H. 2010. Overview on concepts and strategies studies of modern irrigation water management development. Journal of Hydraulic Engineering 39:1204–1212. (In Chinese)
37- Zhang F., Cui Z., Fan M., Zhang W., Chen X., and Jiang R. 2011. Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. J. Environ. Qual. 40: 1051–1057.
38- Zhang G.P., Hoekstra A.Y., and Mathews R.E. 2013. Water Footprint Assessment (WFA) for better water governance and sustainable development. Water Resour & Ind 1-2: 1–6.
39- Zhao X., Chen B., and Yang Z.F. 2009. National water footprint in an input–output framework—A case study of China 2002. Ecological Model 220: 245–253.
40- Zhao C.F., and Chen B. 2014. Driving force analysis of the agricultural water footprint in China based on the LMDI method. Environmental Science and Technology 48: 12723–12731.
41- Zoumides C., Bruggeman A., Hadjikakou M., and Zachariadis T. 2014. Policy-relevant indicators for semi-arid nations: The water footprint of crop production and supply utilization of Cyprus. Ecol Indic. 43: 205–214.
ارجاع به مقاله
گودرزیم., پیریائیر., & موسویم. ر. (2020). درک پیوند آب-غذا-انرژی و مدیریت برای بهره¬وری از منابع آب موجود. آب و خاک, 34(2), 255-268. https://doi.org/10.22067/jsw.v34i2.78589
نوع مقاله
علمی - پژوهشی