##plugins.themes.bootstrap3.article.main##

عبدالرحیم فیروزی سیدمجید میرلطیفی حامد ابراهیمیان طالشی

چکیده

امروزه فعالیت­های انسانی در بخش کشاورزی به­خصوص در نواحی خشک و نیمه­خشک برروی چرخه و انتقال آب سطحی و زیرزمینی تاثیر به‌سزایی داشته است. از این­رو، بررسی وضعیت منابع آب زیرزمینی دارای اهمیت است. تخمین‌های مناسب و قابل‌اعتماد تغذیه ناشی از آبیاری بر آب زیرزمینی می­تواند در این امر موثر باشد. به‌منظور بررسی تأثیر آبیاری بر تغذیه آبخوان، يك مزرعه گندم، دو مزرعه جو و سه مزرعه چغندرقند در شهرستان میاندوآب و دو مزرعه گندم در شهرستان مهاباد در حوضه دریاچه ارومیه تحت مدیریت کشاورزان انتخاب شدند. شبیه‌سازی نفوذ با استفاده از مدل HYDRUS-1D در طول دوره رشد محصولات مذکور انجام شد. با پایش رطوبت خاک در این مزارع، مدل با رطوبت‌های خاک اندازه‌گیری شده از طریق حل معکوس، واسنجی و صحت­سنجی شد. دقت مدل بعد از انجام مراحل واسنجي و صحت­سنجي در تخمين جريان آب در داخل خاك مناسب بود. مقادیر ضریب تعیین و خطای جذر میانگین در مرحله واسنجی به ترتیب بین 6/0 تا 85/0 و 17/0 تا 033/0  به دست آمد. ضریب تعیین و خطای جذر میانگین مربعات در مرحله صحتسنجی نیز به ترتیب بین 62/0 تا 88/0 و 002/0 تا 023/0 () به دست آمد. پس از واسنجی مدل، تغییرات رطوبت در اعماق مختلف خاک تا سطح آبخوان توسط مدل شبیه‌سازی شد. پیشروی رطوبت در عمق خاک از عمق 7/0 تا 7/4 توسط مدل برآورد شد. آب آبياري سبب تغذيه آب زيرزميني در مزارع مورد مطالعه شد كه اين میزان تغذیه در اثر آبیاری و بارندگی، بسته به نوع خاک، نوع کشت و مدیریت آبیاری در مزارع مختلف متفاوت بود. بیشترین تغذیه در مزرعه H3 با خاک لوم رسی شنی به مقدار 221 میلی متر از 789 میلی متر مجموع آبیاری و بارندگی (28 درصد) در طول فصل کشت گیاه جو بدست آمد.

جزئیات مقاله

کلمات کلیدی

آبیاری, تغذیه, سطح آبخوان, شبیه سازی, HYDRUS

مراجع
1- Abbasi F. 2005. Simulation of water movement in the soil, using HYDRUS-1D, Workshop on Irrigation and Drainage Modeling, National Committee on Irrigation and Drainage Iran, Tehran. (In Persian)
2- AhmadZadeh H. 2012. Evaluate the efficiency of agricultural water using SWAT model, case study: Zarrine rood region, Master’s thesis. Facility of agriculture, Tarbiat Modares University. (In Persian)
3- Allen R.G., Howell T.A., Pruitt W.O., Walter I.A., and Jensen M.E. 1991. Lysimeters for evapotranspiration and environmental measurements. The Standardized Refrence Evapotraspiration Equation.
4- Allen R.G., Pereira L.S., Raes D., and Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9):D05109.
5- Assefa K.A., and Woodbury A.D. 2013. Transient, spatially varied groundwater recharge modeling. Water Resources Research 49(8): 4593-4606.
6- Chamberlain A.R. 1952. Measuring water in small channels with WSC flume. Washington Agricultural Experiment Stations, Institute of Agricultural Sciences, State College of Washington.
7- Ebrahimian H., Liaghat A., Parsinejad M., Playán E., Abbasi F., and Navabian M. 2013. Simulation of 1D surface and 2D subsurface water flow and nitrate transport in alternate and conventional furrow fertigation. Irrigation Science 31(3): 301-316.
8- Feddes R.A., Kowalik P.J., and Zaradny H. 1978. Simulation of field water use and crop yield. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.
9- Geradfaramarzi S., and Abedi Koupai J. 2010. Quantification of groundwater recharge in Isfahan (Iran) using the CRD model. Journal of Water and Wastewater 21(4): 92-97
10- Jiménez-Martínez J., Skaggs T.H., Van Genuchten M.T., and Candela L. 2009. A root zone modelling approach to estimating groundwater recharge from irrigated areas. Journal of Hydrology 367(1): 138-149.
11- Larijani SH., Noori H., and Ebrahimian H. 2017 Estimating groundwater recharge by HYDRUS-1D model (Case study: Hashgerd). Iranian Journal of Irrigation and Drainage 4(11):572-585 (In Persian with English abstract)
12- Lu X., Jin M., van Genuchten M.T., and Wang B. 2011. Groundwater recharge at five representative sites in the Hebei Plain, China. Ground Water 49(2):286-294.
13- Neto D.C., Chang H.K., and van Genuchten M.T. 2016. A mathematical view of water table fluctuations in a shallow aquifer in Brazil. Groundwater 54(1): 82-91.
14- Porhemmat J., Nakhaei M., Dadgar M.A., and Biswas A. 2018. Investigating the effects of irrigation methods on potential groundwater recharge: A case study of semiarid regions in Iran. Journal of Hydrology 565:455-466.
15- Qiguang D.O.N.G., Weibo Z.H.O.U., Yang Z.H.A.N.G., Ying H.O.U., Zenghui S.U.N., and Na L.I. 2017, November. Effects of irrigation on groundwater recharge under deep buried depth condition. In IOP Conference Series: Earth and Environmental Science 94(1): 012159.
16- Salamati N., Delbari M., Abbasi F., Sheini Dashtgol. 2016. A Simulation of Water and Nitrate Transport in Soil Using HYDRUS-1D Model in Furrow Irrigation of Sugarcane. Journal of Water and Soil Science -Isfahan University of Technology 19(74): 179-192
17- Šimůnek J., Van Genuchten M.T., and Šejna M. 2006. The HYDRUS software package for simulating two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical Manual Version, 1:241.
18- Simunek J.I.Ì.Í., and Hopmans J. 2002. 1.7 Parameter Optimization and Nonlinear Fitting. Methods of Soil Analysis: Part 4 Physical Methods 1(5): 139-57.
19- Steel R.G.D., and Torrie J.H. 1960. Principles and procedures of statistics. Principles and procedures of statistics.
20- Van Genuchten M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44(5): 892-898.
21- Yue W., Liu X., Wang T., and Chen X. 2016. Impact of water saving on groundwater balance in a large-scale arid irrigation district, Norg west China. Irrigation Science 1-16.
ارجاع به مقاله
فیروزیع., میرلطیفیس., & ابراهیمیان طالشیح. (2020). بررسی تأثیر مدیریت آبیاری بر نوسانات سطح آب زیرزمینی کم عمق (یک مطالعه موردی: مناطق میاندوآب و مهاباد) . آب و خاک, 34(3), 533-547. https://doi.org/10.22067/jsw.v34i3.80020
نوع مقاله
علمی - پژوهشی