##plugins.themes.bootstrap3.article.main##

رضا خدادادی رضا قربانی نصر آبادی محسن علمائی سید علیرضا موحدی نائینی

چکیده

از جمله روش­های مناسب برای مقابله با شوری، تلقیح گیاهان زراعی با انواع مختلفی از باکتری­های ریزوسفری محرک رشد گیاه می­باشد. بدین منظور آزمایشی گلخانه­ای در قالب طرح کاملا تصادفی با آرایش فاکتوریل در سه تکرار روی گیاه جو رقم کارون انجام شد. تیمارهای آزمایش شامل چهار سطح تلقیح باکتری (بدون تلقیح (شاهد)، ازتوباکتر، آزوسپریلوم و تلقیح تلفیقی ازتوباکتر و آزوسپیریلیوم) و دو سطح شوری (8 و 16 دسی زیمنس­بر متر) بودند. نتایج نشان داد که تنش شوری تاثیر منفی ودر مقابل، تلقیح باکتری تاثیر مثبت و معنی­داری بر ویژگی­های رشدی گیاه داشت. کاربرد تلفیقی باکتری­های ازتوباکتر و آزوسپیریلیوم بهینه­ترین تیمار شناخته شد. تیمار تلفیقی سبب بهبود ویژگی­های رشدی گیاه و افزایش محتوی کلروفیل در هر دو سطح شوری شد. بر این اساس، محتوی کلروفیل a، b و کل در سطح شوری بالا به ترتیب به میزان 49/86، 136/117 و 97/127درصد نسبت به شاهد افزایش یافت. همچنین تیمار تلفیقی به ترتیب افزایش 39/65 و 94/55 درصدی اسید­آمینه پرولین را نسبت به شاهد در سطوح شوری 8 و 16 دسی‌زیمنس­برمتر به همراه داشت. از سویی، تیمار تلفیقی در هر دو سطح شوری تاثیر معنی­داری بر افزایش غلظت عناصر غذایی اندام هوایی داشت. بر این اساس در سطح شوری بالا به ترتیب افزایش 97/81، 80 و 67/66 درصدی غلظت نیتروژن، فسفر و پتاسیم در مقایسه با شاهد مشاهده شد. تجمع یون سدیم در تمامی تیمارهای باکتریایی در هر دو سطح شوری نسبت به تیمار شاهد کاهش یافت. این یافته­ها نشان دهنده اثر مثبت تلقیح باکتریایی بر رشد و جذب عناصر غذایی جو تحت تنش شوری بود.

جزئیات مقاله

کلمات کلیدی

باکتری های محرک رشد, پرولین, شوری, کلروفیل

مراجع
1- Ali Ayyayi M. 1997. Descriptions of methods for soil chemical analysis. Volume II No. 1024, Soil and Water Research Institute, Tehran. (In Persian)
2- Ahmad P.A., ozturk M.U., and satyawati S.H. 2014. Effect of sodium carbonate-indaced salinity alkalinity on some osmoprotectahts, protein profile antioxidant enzymes and lipid peroxidantion in two mulberry. Plant Interactions 9:460-467.
3- Ashraf M., Hasnain S., and Hussain F. 2005. Exopolysaccharides(exopolysaccharide)producing biofilm bacteria in improving physicochemical characteristics of the saltaffected soils. Proceedings of the International Conference on EnvironmentallySustainable Development.
4- Arora N.K., Tewari S., Singh S., Lal N., and Maheshwari D.K. 2012. PGPR for protection of plant health under saline conditions. Bacteria in Agrobiology, Stress Management 239–258.
5- Arnon D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24-1: 1.
6- Arzanesh M.H., Alikhani H.A., Khavazi K., Rahimian H.A., and Miransari M. 2011. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal Microbiology Biotechnology 27: 197-205.
7- Munns R., and Tester M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biology 59: 651-681.
8- Asghari B., and Musarrt J. 2009. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils 45: 405-413.
9- Bates L.S., Waldren R.P. and Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39(1): 205-207.
10- Bhardwaj D., Ansari MW., Sahoo RK., and Tuteja N. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories 13: 66.
11- Bashan Y., Holguin G., and de-Bashan L. E. 2004. Azospirillumplantrelationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian Journal of Microbiology 50-8: 521-577.
12- Bargaz A., Nassar R.M.A., Rady M.M., Gaballah M.S., and Thompsn S.M. 2016 . Improved Salinity Tolerance by Phosphorus Fertilizer in Two Phaseolus vulgaris Recombinant Inbred Lines Contrasting in Their P-Efficiency. Agronomy and Crop Science 202: 497-507.
13- Beinsan C., Camen D., Sumalan R., and Babou M. 2000. Study concerning salt stress effect on leaf area dynamics and chlorophyll content infour bean local landraces from Banat area. International symposium on Agriculture, Romania.
14- Chandrasekar B.R., Ambrose G., and Jayabalan N. 2005. Influence of biofertilizers and nitrogen source level on the growth and yield of Echinochloa frumentacea. Journal of Agricultural Technology 1: 223–234.
15- Chaudhary D., Narula N.S.S., and Sindhu R.K., Behl. 2013. Plant growth stimulation of wheat (Triticum aestivum L.) by inoculation of salinity tolerant Azotobacter strains. Physiology and Molecular Biology of Plants 19(4): 515–519.
16- Dobbelaere S., Vanderleyden J., and Okon Y. 2003. Plant growth promoting effect of diazotrophs in the rhizosphere. Critical Review Inplant Science 22-2: 107-149.
17- Egamberdiyevaa D., and Hoflich, G. 2003. Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biology and Biochemistry 35: 973–978.
18- Egamberdiyeva D., and Lugtenverg B. 2015. Use of plant Growth- ptomoting Rhizobacteria to Alleviates alinity stress in plants. Use of Microbes for the Alleviation of Soil Stresses 1:73-96.
19- FAO. 2010. Extent and causes of salt-affected soils in participating countries. Available at http://www.fao.org/ag/AGL/agll/spuch/topic4.htm.
20- Glick B.R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41: 109-117.
21- Harley J.L., and Smith S.E. 2000. Azotobacter Symbiosis. Academic Press, London.
22- Hamdi M.A., Shaddad M.A.K., and Doaa M.M. 2004. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Physiology 44: 165.
23- Han H.S., and Lee K.D. 2005. Physiological Responses of Soybean - Inoculation of Bradyrhizobium japonicum with PGPR in Saline Soil Conditions. Agricultural and Biological Sciences 1: 216-221.
24- Heydarian Z., Yu M., Gruber M., Glick BR., Zhou R., and Hegedus DD. 2016. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa. Frontiers in Microbiology 7: 1966.
25- Hoflich G., Wichc W., and Kuhn G. 1982. Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms in salt stress. Experientia 50(10): 897-905.
26- Kafi M., and Khan M.A. 2008. Relatve salt tolerance of south Khorasan millets. Desert 14: 63-71.
27- Kao W.Y., Tasai, H.C. and Tasi T.T. 2001. Effect of Nacl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species Kandelia candel (L.) Druce. Journal of Plant Physiology 158: 841-846.
28- Krieg N. R. 2005. Bergey,s Manual of Systematic Bacteriology, Williams and Wilkins, 1136p.
29- Kumar T.S., Swaminathan V., and Kumar S. 2009. Influence of nitrogen phosphorus and biofertilizers on growth yield and essential oil constituents in ratoon crop of davana (Artemisia pallens Wall.). Electronic Journal of Environmental Agricultural and Food Chemistry 8:86-95.
30- Maas E.V., and Hoffman G.J. 1977. Crop salt tolerance–current assessment. Journal of the Irrigation and Drainage Division 103(2): 115-34.
31- Meena R.S., Meena V.S., Meena S.K., and Verma J.P .2015. Towards the plant stress mitigate the agricultural productivity: a Book Review 102: 552–553.
32- Marius S., Octavita A., Eugen U., and Vlad A. 2005. Study of a microbial inoculation on several biochemical indices in sunflower (Helianthus anuus L.) in salt stress. Genetica si Biologie Moleculara 11-14.
33- Mehta S., and Nautiyal C. S. 2001. An efficient method for qualitativa screening of phosphate-solubilizing bacteria. Current Microbiology 43: 51-56.
34- Mohapatra B., Verma D.K., Sen A., Panda B.B., and Asthie B. 2013. Biofertilizers- a gateway of sustainable agriculture. Popular Kheti 1: 97–106.
35- Mitra D., Sharma K., Uniyal N., Chauhan A., Sarkar P. 2016. Study on plant hormone (indole-3- acetic acid) producing level and other plant growth promotion ability (pgpa) by Asparagus racemosus rhizobacteria. Journal Chem Pharm Research 8: 995–1002.
36- Narula N., Kumar V., Behl R. K., Deubel A., Gransee A., and Merbach W. 2000. Effect of P-solubilizing Azotobacter chroococcum on N, P, K uptake in P-responsive wheat genotypes grown under greenhouse conditions. Plant Nutrient Soil Science 163: 393–398.
37- Nehra V., and Choudhary M. 2015. A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. Journal of Applied and Natural Science 7(1): 540-556.
38- Nosrati R., Owlia P., Saderi H., Rasooli I., and Malboobi M.A. 2014. Phosphate solubilization characteristics of efficient nitrogen fixing soil Azotobacter strains. Iranian Journal of Microbiology 6(4): 285.
39- Panwar M., Tewari R., Gulati A., and Nayyar, H. 2016. Indigenous salt-tolerant rhizobacterium Pantoea dispersa (PSB3) reduces sodium uptake and mitigates the effects of salt stress on growth and yield of chickpea. Acta Physiologiae Plantarum 38(12): 278.
40- Parihar P., Singh S., Singh R., and Prased S. 2015. Effect of salinity stress on plants and its tolerance strategies. Enviromental science and Pollution Research 22:4056-4075.
41- Pessarakli M.ed., 2016. Handbook of plant and crop stress. CRc press.
42- Peng Y.L., Gao Z.W., Gao Y., Liu G.F., Sheng L.X. and Wang D.L. 2008. Ecophysiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses. Journal of Integrative Plant Biology 50 (1): 29-39.
43- Rais L., Masood A., Inam A., and Khan N. 2013. Sulfur and nitrogen co-ordinately improve photosynthetic efficiency, growth and proline accumulation in two cultivarsof mustard under salt stress. Plant Biochemistry and Physiologye.
44- Rai S.N., and Gaur A.C. 2001. Characterization of Azotobacter SPP and effect of Azotobacter and Azospirillum as inoculant on the yield and N Uptake of wheat crop. Plant Soil 109: 131-134.
45- Santi C., Bogusz D., and Franche C. 2013. Biological nitrogen fixation in non-legume plants. Annals of Botany 10: 1–25.
46- Sayed A.V., and Hossein A.F. 2011. Investigation of biofertilizers influence on quantity and quality characteristics in Nigella sativa L. Journal of Horticulture and Forestry 3- 3: 88–92.
47- Saxena B., Shukla K., and Giri B., 2017. Arbuscular Mycorrhizal Fungi and Tolerance of Salt Stress in Plants. Arbuscular Mycorrhizas and Stress Tolerance of Plants 24: 67-97.
48- Spaepen S., and Vanderleyden J. 2011. Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology 3(4): a001438.
49- Yildirim E., Turan M., and Donmez M. 2008. Mitigation of salt stress in radish (Raphanus sativus L.) by plantgrowth promoting rhizobacteria. Rumanian Biotechnological Letters 13-5: 3933-3943.
50- Zaki H.E., and Yokoi S. 2016. A comparative in vitro study of salt tolerance in cultivated tomato and related wild species. Plant Biotechnology 33(5): 361-372.
51- Zarea M.J., Hajinia S., Karimi N., Mohammadi Goltapeh E., Rejali F., and Varma A. 2012. Effect of Piriformospora indica and Azospirillum strains from salineor non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry 45: 139–146.
52- Zahir Z.A., Ghoni U., Naveed M., Nadeem S.M., and Asghar H.N. 2009. Comporative effectivness of pseudomonas and serratia sp. Containing ACC-diaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Archives of Microbiology 191(5): 415-424.
ارجاع به مقاله
خدادادیر., قربانی نصر آبادیر., علمائیم., & موحدی نائینیس. ع. (2020). اثر تلقیح باکتری¬های ازتوباکترو آزوسپیریلیوم بر خصوصیات رشدی و فیزیولوژیکی گیاه جو تحت تنش شوری. آب و خاک, 34(3), 649-660. https://doi.org/10.22067/jsw.v34i3.81093
نوع مقاله
علمی - پژوهشی