##plugins.themes.bootstrap3.article.main##

سمیرا کشاورز رضا قاسمی

چکیده

کاربرد تنظیم کننده­های رشد و سورفکتانت می­تواند روش مؤثری برای مقابله با تنش­هایی مانند آلودگی فلزات سنگین باشد. به منظور بررسی اثر تنظیم کننده­های رشد و سورفکتانت بر رشد و غلظت عناصر و شاخص­های گیاه­پالایی در گیاه گلرنگ، آزمایشی گلخانه­ای در قالب طرح کاملا تصادفی و به صورت فاکتوریل 3×4 شامل سه سطح سورفکتانت (شاهد، 5/2 و 5 میلی­مول در کیلوگرم) و چهار سطح تنظیم کننده رشد گیاه (شاهد، جیبرلیک اسید، ایندول استیک اسید و بنزیل آمینوپورین) با سه تکرار انجام شد. نتایج نشان داد اضافه کردن سورفکتانت و تنظیم کننده­های رشد باعث افزایش معنی­دار وزن خشک اندام هوایی، ضریب تجمع زیستی، شاخص جذب، غلظت و جذب کروم در اندام هوایی شدند. افزدون سورفکتانت باعث کاهش غلظت و جذب آهن در غیاب تنظیم کننده‌های رشد شد، اما در حضور تنظیم کننده‌های رشد گیاهی غلظت آهن افزایش می‌یابد. کاربرد 5 میلی­مول بر کیلوگرم سورفکتانت میانگین غلظت منگنز، مس و روی را کاهش داد. درحالی‌که اضافه کردن 5/2 میلی­مول بر کیلوگرم سورفکتانت غلظت فلزات را افزایش داد. اگرچه افزودن 5 میلی­مول بر کیلوگرم سورفکتانت وزن خشک را افزایش می­دهد اما اثر مطلوبی روی افزایش غلظت عناصر در گیاه ندارد. بنظر می­رسد که استفاده از تنظیم کننده­های رشد گیاه مقاومت گیاه را به سمیت کروم افزایش می­دهد که احتمالا از طریق افزایش جذب عناصر است. با توجه به نتایج استفاده از سورفکتانت به همراه تنظیم کننده­های رشد گیاه می­تواند علاوه بر افزایش توانایی گلرنگ در مقابله با سمیت کروم، گیاه­پالایی را نیز افزایش دهد.

جزئیات مقاله

کلمات کلیدی

ایندول استیک اسید, بنزیل آمینوپورین, تویین80, جیبرلیک اسید, عناصر کم مصرف

مراجع
1- Adriano D.C. 2001. Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals, 2nd. In.: Springer-Verlag, New York.
2- Afshan S., Ali S., Bharwana S.A., Rizwan M., Farid M., Abbas F., Ibrahim M., Mehmood M.A., and Abbasi G.H. 2015. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environmental Science and Pollution Research 22: 11679-116789.
3- Agnello A.C., Huguenot D., Van Hullebusch E.D., and Esposito G. 2016. Citric acid-and Tween80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential. Environmental Science and Pollution Research International 23: 9215-9226.
4- Akram N.A., Ashraf M., and Al-Qurainy F. 2012. Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes. Scientia Horticulturae 142: 143-148.
5- Almeida C.M.R., Dias A.C., Mucha A.P., Bordalo A.A., and Vasconcelos M.T.S. 2009. Influence of surfactants on the Cu phytoremediation potential of a salt marsh plant. Chemosphere 75: 135-140.
6- Alvarez R., Nissen S.J., and Sutter E.G. 1989. Relationship between indole-3-acetic acid levels in apple (Malus pumila Mill) rootstocks cultured in vitro and adventitious root formation in the presence of indole-3-butyric acid. Plant Physiology 89: 439-443.
7- Asilian E., Ghasemi-Fasaei R., Ronaghi A., Sepehri M., and Niazi A. 2018. Effects of microbial inoculations and surfactant levels on biologically-and chemically-assisted phytoremediation of lead-contaminated soil by maize (Zea Mays L.). Chemistry and Ecology 34: 964-977.
8- Babaeian E., Homaee M., and Rahnemaie R. 2016. Chelate-enhanced phytoextraction and phytostabilization of lead-contaminated soils by carrot (Daucus carota). Archives of Agronomy and Soil Science 62: 339-358.
9- Bohidar S., Thirunavoukkarasu M., and Rao T.V. 2008. Effect of Plant Growth Regulators on in vitro micropropagation of “Garden Rue”(Ruta graveolens L.). International Journal of Integrative Biology 3: 36-43.
10- Boonyapookana B., Upatham E.S., Kruatrachue M., Pokethitiyook P., and Singhakaew S. 2002. Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. International Journal of Phytoremediation 4: 87-100.
11- Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54: 464-465.
12- Cabello-Conejo M.I., Centofanti T., Kidd P.S., Prieto-Fernández Á., and Chaney R.L. 2013. Evaluation of plant growth regulators to increase nickel phytoextraction by Alyssum species. International Journal of Phytoremediation 15: 365-375.
13- Cheng M., Zeng G., Huang D., Yang C., Lai C., Zhang C., and Liu Y. 2017. Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds. Chemical Engineering Journal 314: 98-113.
14- Cserháti T. 1995. Alkyl ethoxylated and alkylphenol ethoxylated nonionic surfactants: interaction with bioactive compounds and biological effects. Environmental Health Perspectives 103: 358-364.
15- Farid M., Ali S., Rizwan M., Ali Q., Abbas F., Bukhari S.A.H., Saeed R., and Wu L. 2017. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicology and Environmental Safety 145: 90-102.
16- Farid M., Ali S., Rizwan M., Ali Q., Saeed R., Nasir T., Abbasi G.H., Rehmani M.I.A., Ata-Ul-Karim S.T., Bukhari S.A.H., and Ahmad T. 2018. Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid. Ecotoxicology and Environmental Safety 151: 255-265.
17- Farooq M.A., Ali S., Hameed A., Bharwana S.A., Rizwan M., Ishaque W., Farid M., Mahmood K., and Iqbal Z. 2016. Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany 104: 61-68.
18- Fozia A., Muhammad A.Z., Muhammad A., and Zafar M.K. 2008. Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). Journal of Environmental Sciences 20: 1475-1480.
19- Gangwar S., Singh V.P., Srivastava P.K., and Maurya J.N. 2011. Modification of chromium (VI) phytotoxicity by exogenous gibberellic acid application in Pisum sativum (L.) seedlings. Acta Physiologiae Plantarum 33: 1385-1397.
20- Halter L., Habegger R., and Schnitzler W.H. 2000. Gibberellic acid on artichokes (Cynara scolymus L.) cultivated in Germany to promote earliness and to increase productivity. In IV International Congress on Artichoke 681: 75-82.
21- Houshm A., and Moraghebi F. 2011. Effect of mixed cadmium, copper, nickel and zinc on seed germination and seedling growth of safflower. African Journal of Agricultural Research 6: 1463-1468.
22- Kaszycki P., Gabryś H., Appenroth K‐J., Jaglarz A., Sedziwy S., Walczak T., and Koloczek H. 2005. Exogenously applied sulphate as a tool to investigate transport and reduction of chromate in the duckweed Spirodela polyrhiza. Plant, Cell and Environment 28(2): 260-268.
23- Kotb M.S. 2017. Effect of surfactant on adsorption and mobility of lead and cadmium in soils. Egypt Journal of Soil Science 57: 155-165.
24- Krantev A., Yordanova R., Janda T., Szalai G., and Popova L. 2008. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology 165: 920-931.
25- Lindsay W.L., and Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42(3): 421-428.
26- Liu D., Zou J., Wang M., and Jiang W. 2008. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresource Technology 99: 2628-2636.
27- Mouton J., Mercier G., and Blais J.F. 2009. Amphoteric surfactants for PAH and lead polluted-soil treatment using flotation. Water, Air, and Soil Pollution 197: 381-393.
28- Naqvi S.S.M. 1999. Plant hormones and stress phenomena. Handbook of plant and crop stress, pp.709-730.
29- Ramamurthy A.S., Vo D., Li X.J., and Qu J. 2008. Surfactant-enhanced removal of Cu (II) and Zn (II) from a contaminated sandy soil. Water, Air, and Soil Pollution 190: 197-207.
30- Nelson D., and Sommers L.E. 1982. Total carbon, organic carbon, and organic matter. Methods of soil analysis. Part 2. Chemical and microbiological properties (methodsofsoilan2): 539-579.
31- Rhoades J. 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis Part 3-Chemical Methods (methodsofsoilan3): 417-435.
32- Saleem M., Asghar H.N., Khan M.Y., and Zahir Z.A. 2015. Gibberellic acid in combination with pressmud enhances the growth of sunflower and stabilizes chromium (VI)-contaminated soil. Environmental Science and Pollution Research 22: 10610-10617.
33- Shafigh M., Ghasemi-Fasaei R., and Ronaghi A. 2016. Influence of plant growth regulators and humic acid on the phytoremediation of lead by maize in a Pb-polluted calcareous soil. Archives of Agronomy and Soil Science 62: 1733-1740.
34- Solhi M., and Hajabbasi M.A. 2005. Heavy metals extraction potential of sunflower (Helianthus annuus) and canola (Brassica napus). Caspian Journal of Environmental Sciences 3: 35-42.
35- Sujatha M., Geetha A., Sivakumar P., and Palanisamy N. 2008, November. Biotechnological interventions for genetic improvement of safflower. In Proceedings of the 7th international safflower conference (pp. 3-6).
36- Swarnkar V., Agrawal N., and Tomar R. 2012. Sorption of chromate and arsenate by surfactant modified erionite (E-SMZ). Journal of Dispersion Science and Technology 33: 919-927.
37- Tassi E., Pouget J., Petruzzelli G., and Barbafieri M. 2008. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere 71: 66-73.
ارجاع به مقاله
کشاورزس., & قاسمیر. (2020). اثر برخی تنظیم کننده‌های رشد و سورفکتانت بر گیاه گلرنگ در خاک آلوده به کروم. آب و خاک, 34(1), 155-167. https://doi.org/10.22067/jsw.v34i2.81521
نوع مقاله
علمی - پژوهشی