تأثیر رویکرد پیوندی آب، انرژی و غذا در مدیریت یکپارچه منابع آب شبکه آبیاری و زهکشی سفیدرود

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه گیلان

2 شرکت مهندسین مشاور هیدروتک توس

چکیده

جمعیت رو به افزایش جهان به‏خصوص کشورهای در حال توسعه از یک سو و نیاز به تأمین غذا برای این جمعیت از سوی دیگر، نتیجه‏ای جز برداشت بی‏رویه از منابع را به دنبال نداشته است. به دنبال تعیین اهداف هزاره سوم سازمان ملل متحد، پژوهشگران رویکردهای میان‌رشته‌ای متنوعی را برای دستیابی به نوعی تعادل پویا در تولید و مصرف منابع ارائه داده‌اند که از مهم‌ترین آن‌ها رویکرد پیوند آب، انرژی و غذا است. با توجه به محدودیت‏های منابع موجود که روز به روز تشدید می‌گردد، این رویکرد با استفاده از یکپارچه‏سازی چرخه آب، انرژی و غذا سبب افزایش بهره‏وری می‌گردد. آب، انرژی و غذا علی‏رغم داشتن تفاوت‏های ذاتی از دیدگاه سیستمی، شباهت‏های فراوانی دارند، که به دلیل این ارتباط سیستمی و اثر متقابل آن‏ها بر یکدیگر، امروزه مفهوم جدیدی به نام رویکرد پیوندی مطرح شده است. با توجه به اهمیت این رویکرد در مدیریت یکپارچه منابع آب در این پژوهش، به­منظور مدیریت شبکه آبیاری و زهکشی سفیدرود واقع در استان گیلان، یکی از استان‏های واقع در حوضه‏ی آبریز سفیدرود از این رویکرد استفاده شده است. در این راستا، از نرم‏افزارهای WEAP برای مدیریت منابع آب و غذا و نرم‏افزار LEAP برای مدیریت بخش انرژی در شبکه آّبیاری و زهکشی سفیدرود استفاده شد. سپس با برقراری ارتباط بین این دو نرم‏افزار، به مدیریت یکپارچه منابع آب این منطقه پرداخته شد. سپس پارامترهای خروجی مدل ارتباطی توسعه داده شد، مانند نیاز خالص آب در منطقه، نقطه نیاز به منابع آبی، آب عرضه نشده و درصد تأمین نیاز بدون در نظر گرفتن بخش انرژی و با در نظر گرفتن انرژی مقایسه شدند. نتایج این مطالعه نشان داد نیاز خالص آبی و آب عرضه شده به شبکه آبیاری و زهکشی سفیدرود در سال 2016 با رویکرد پیوندی، به‌ترتیب 6/8 و 7/8 میلیون متر مکعب بیشتر از حالت بدون رویکرد پیوندی به‌دست آمد. بنابراین بخش قابل توجهی از مقادیر عرضه و تقاضا در مدیریت غیرپیوندی در نظر گرفته نمی­شود. در حالی‌که، هر چه این مقادیر به واقعیت نزدیک­تر باشد، برنامه­ریزی­های مدیریتی منطقی­تر و درصد اجرای آن­ها نیز افزایش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Water, Energy, Food Nexus Approach Impact on Integrated Water Resources Management in Sefid-Rud Irrigation and Drainage Network

نویسندگان [English]

  • Z. Eslami 1
  • S, Janatrostami 1
  • A. Ashrafzadeh 1
  • Y. Pourmohamad 2
1 University of Guilan
2 Consulting Engineering Company
چکیده [English]

Introduction: Implementing Integrated Water Resources Management requires balancing conflicting goals, and the effects on developing countries, which have a poor institutional capacity for change, and suggests a slower pace of integrated water resources management. The growing population of the world, especially in developing countries on one hand, and the need to provide food for this population, on the other hand, have not been the result of overreaching of resources. In this manner, the continuation of an untapped harvest of resources will endanger the sustainability of the region in the near future. Food production is largely depending on the water so that 70 to 80 percent of the water extracted from resources is consumed for irrigation, which is the reason why irrigated cultivation is regarded as inefficient consumers. Understanding how to extract, manage and consume water is the key to solve this problem. On the other hand, the health and safety of communities and agricultural production require energy. Principally in irrigation, it is not possible to extract water without consuming energy. Seeking to establish the goals of the third millennium of the United Nations, researchers have presented a variety of interdisciplinary approaches to achieve a dynamic balance in the food production and consumption of resources, most notably the approach of Water, Energy and Food (WEF) Nexus. Considering the limitation of the resources which is increasing day by day. This approach causes productivity increase by integrating water, energy and food cycles. Managing water, energy and food, despite the inherent systemic differences, are very similar, due to the close relationship between the system perspective and their interaction with each other, a new concept is now called a Nexus approach. This viewpoint describes the interconnected nature and the interplay of the three sectors.
Materials and Methods: This research was carried out in Sefid-Rud dam Irrigation and Drainage Network. Sefid-Rud basin is located in the Guilan province, which is benefits from high precipitation, but factors such as dams construction in the upper reaches of the Sefid-Rud dam, the timely inconvenient precipitation and the lack of infrastructure to harvest the runoff, causes water shortages in the area. It is worth mentioning that 50% of the Guilan households have engaged in rice cultivation and more than 70% of the lands are located in the irrigation and drainage network of the Sefid-Rud dam. Hence, reducing rice cultivation in this region will have a great impact on economic and social life. Managing a Nexus approach to provide WEF security requires integrated and analytical approaches that can identify cross-sectoral exchanges, cost-effective planning, policy, and strategy management. Therefore, in this study, WEAP and LEAP software were used for managing water and food resources and managing the energy sector in Sefid-Rud irrigation and drainage network, respectively. Then, the integrated water resources management in the area was addressed by establishing a linkage between these two applications. In the first part of this study, the parameters output such as net water demand, water resources share for each demand node, unmet demand and the coverage regardless of the energy sector were compared.
Results and Discussion: The results reveal that the annual water requirement of the Sefid-Rud irrigation and drainage network in 2016 with the NEXUS approach estimated about 8 million cubic meters more than the non-NEXUS approach. Agriculture is the most water-consuming node in the region and there are lots of dependencies on rice cultivation as the most water-consuming crop in the Guilan region. The next step aims to balance the supply and demand, the unmet demand at the agricultural section in the Foomanat, Central and East areas under various management scenarios. These scenarios are including dredging, increase the efficiency of transmission and distribution channels of irrigation and drainage networks, and eliminating unauthorized wells were evaluated.
Conclusion: By examining the results of the applied management scenarios mentioned above, the 30% increase in the efficiency of transmission and distribution channels of irrigation and drainage networks in Sefid-Rud has the greatest impact on meeting the demand and reducing the unmet demands of triple areas. As a result of the 30% efficiency improvement scenario, decrease the agricultural demands of the Foomanat area, the central area, and the east (about 29.1, 84.5 and 62.1 million cubic meters, respectively) more than the reference scenario.

کلیدواژه‌ها [English]

  • Guilan province
  • Integrated Management
  • Nexus Approach
  • LEAP
  • WEAP
1- The World Bank IEG. 2010. The Global Water Partnership 4(3).
2- Pourmohamad Y., Alizadeh A., Mousavi Baygi M., Gebremichael M., Ziaei A.N., and Bannayan M. 2019. Optimizing cropping area by proposing a combined water-energy productivity function for Neyshabur Basin, Iran. Agricultural Water Management 217: 131–140.
3- Hettiarachchi H., and Ardakanian R. 2016. Environmental Resource Management and the Nexus Approach: Managing Water, Soil, and Waste in the Context of Global Change. Dresden ,Germany.
4- Kaddoura S., and El Khatib S. 2017. Review of water-energy-food Nexus tools to improve the Nexus modelling approach for integrated policy making. Environmental Science & Policy 77: 114–121.
5- Mahdavi Moghadam M. 2016. Investigation of Water, Energy and Food Nexus in Integrated. K. N. Toosi University of Technology. (In Persian with English abstract)
6- Zhang X., and Vesselinov V.V. 2016. Energy-water nexus: Balancing the tradeoffs between two-level decision makers. Applied Energy 183: 77–87.
7- Font Vivanco D., Wang R., and Hertwich E. 2018. Nexus strength: A novel metric for assessing the global resource nexus. Journal of Industrial Ecology 22(6): 1473–1486.
8- Karatayev M., Rivotti P., Mourão Z.S., Konadu D.D., Shah N., and Clarke M. 2017. The water-energy-food nexus in Kazakhstan: challenges and opportunities. Energy Procedia 125: 63–70.
9- Oki T., and Kanae S. 2006. Global hydrological cycles and world water resources. Science 313 (5790): 1068–1072.
10- Karlberg L., Hoff H., Amsalu T., Andersson K., Binnington T., Flores-Lopez F., Bruin A., Gebrehiwot S. G., Gedif B., Heide F., Johnson O., Osbeck M., and Young C. 2015. Tackling complexity: Understanding the food-energy-environment nexus in Ethiopia’s Lake Tana Sub-basin. Water Alternatives 8(1): 710–734.
11- Pan B., Sun L., Lu H., Wang W., and Gu A. 2017. Renewable and Sustainable Energy Reviews 93: 27–34.
12- Assaf H., and saadeh M. 2008. Environmental Modelling, Software and Decision Support. Developments in Integrated Environmental Assessment 3: 229–246.
13- Stockholm Environment Institute, WEAP- TUTORIAL Water Evaluation And Planning System, no. August. 2016.
14- Sieber J., and Purkey D. 2007. User guide for WEAP21. Stockholm Environment Institute.
15- Heaps C.G. 2012. Long-range Energy Alternatives Planning (LEAP) system. [Software version 2012.0016] Stockholm Environment Institute, Somerville, MA, USA.
16- Salahi-Moghaddam A., Habibi-Nokhandam M., and Fuentes M.V. 2011. Low-altitude outbreaks of human fascioliasis related with summer rainfall in Gilan province, Iran. Geospatial Health 133–136.
17- Mardani Z., Ghorashi M., Arian M., and Khosrotehrani K.H. 2011. Geomorphic Signatures of Active Tectonics in the Talaghan Rud, Shah Rud and Sefidrud Drainage Basins in Central Alborz, N Iran.
18- Hajiabadi R., and Zarghami M. 2014. Multi-objective reservoir operation with sediment flushing; case study of Sefidrud reservoir. Water Resources Management 28(15): 5357–5376.
19- Hadizadeh F., Allahyari M.S., Damalas C.A., and Yazdani M.R. 2018. Integrated management of agricultural water resources among paddy farmers in northern Iran. Agricultural Water Management 200:19–26.
20- The Statistical Centre of Iran. 2016. [Online]. Available: https://www.amar.org.ir/. [Accessed: 05-Jan-2019].
21- Sayyidrud Consulting Engineers Company Guilan, Determine per capita water consumption, Rasht, 1392.
22- Office of operation and maintenance of irrigation and drainage networks, Water Resources in Sefidrud Irrigation and Drainage Network, Gilan Regional Water Authority, Rasht, 2017.
23- Research and Human Resources Department. 2013. Detailed statistics of Iran’s power industry, Tavanir Organization, Tehran, p. 156.
24- Zafarnejad F. 2009. The contribution of dams to Iran’s desertification. International Journal of Environmental Studies 66(3): 327–341.
CAPTCHA Image