##plugins.themes.bootstrap3.article.main##

بهجت سرچشمه جواد بهمنش وحید رضاوردی نژاد

چکیده

آب نقشی مهم برای رفاه انسانها و محیط­زیست دارد. مردم برای مصارف کشاورزی، صنعتی و خانگی از آب رودخانه استفاده می­کنند. علاوه بر این، برآورده شدن نیاز زیست­محیطی اکوسیستم رودخانه بسیار مهم خواهد بود. کمبود آب یک محدودیت اصلی و جدی برای توسعه اقتصادی-اجتماعی در کشورهای در حال توسعه و یک خطر برای معیشت مردم در نقاط مختلفی از جهان شده است. در سال­های اخیر دریاچه ارومیه که در شمال غرب ایران واقع شده است با کمبود جدی آب مواجه شده­است. زرینه­رود یکی از مهم­ترین رودخانه­هایی است که آب دریاچه را تامین می­کند. در این مطالعه براساس داده­های ماهانه کمیت آب از سال 1365تا 1395 ایستگاه نظام­آباد رودخانه زرینه­رود، نیاز ­جریان زیست­محیطی با روش تنانت محاسبه شد. همچنین داده­های کیفی و کمی آب و نیاز­ جریان زیست­محیطی برای ارزیابی کمبود آب به وسیله شاخص SQQE مورد بررسی قرار گرفت. نتایج نشان داد که متوسط نیاز جریان زیست­محیطی برابر 106× 400 مترمکعب­درسال و برابر با % 11/33 متوسط جریان سالانه جهت مدیریت اکولوژیکی و حفظ اکوسیستم رودخانه در سطح خوب می­باشد. شاخص‌های کمی و کیفی به ترتیب 02/1 و 08/1 محاسبه شدند. محاسبات نشان می­دهند، شاخص کمی، همان شاخص اسمختین، می­باشد. این مقادیر نشان می­دهند که هر دو شاخص کمی و کیفی بالای حد 1 هستند و در نتیجه این ایستگاه در حال تحمل کمبود آب مربوط به کمیت و کیفیت برای مقدار معین نیاز جریان زیست­محیطی می­باشد. بنابراین چاره­اندیشی مدیریتی مناسب، ضروری به نظر می­رسد.

جزئیات مقاله

کلمات کلیدی

ردپای آب, زرینه رود, کمبود آب, کیفیت آب, نیاز جریان زیست¬محیطی

مراجع
1- Adams Janine B. 2014. A review of methods and frameworks used to determine the environmental water requirements of estuaries. Hydrological Sciences Journal 59(3-4): 451-465.
2- Alcazar J., and Palau A. 2010. Establishing environmental flow regimes in a Mediterranean watershed based on a regional classification. Journal Hydrology 388: 41-51.
3- Anisfeld S.C. 2010. Water Resources. Island Press, Connecticut Ave., NW, Washington.
4- Arthington A.H. 2012. Environmental Flow: Saving Rivers in the Third Millennium. University of California Press, Berkeley and Los Angeles, California, USA.
5- Bhakdisongkhram T., Koottatep S., and Towprayoon S. 2007. A water model for water and environmental management at Mae Moh Mine area in Thailand. Water Resource Management 21: 1535-1552.
6- Cai X., Rosegrant M.W., and Ringler C. 2003. Physical and economic efficiency of water use in the river basin: implications for efficient water management. Water Resource 1: 1–12.
7- Cosgrove W.J., and Rijsberman F.R. 2000. World Water Vision: Making Water Everybody's Business, Earth scan Public Ltd London U.K.
8- Falkenmark M., Lundqvist J., and Widstrand C. 1989. Macro-scale water scarcity requires micro-scale approaches. National Resource Forum 13: 258–267.
9- Franke N.A., Boyacioglu H., and Hoekstra A.Y. 2013. Grey water footprint accounting: Tier 1 supporting guidelines. Value of Water Research Report Series, No.65. UNESCO-IHE, Delft, the Netherlands.
10- Hoekstra A.Y., Chapagain A.K., Aldaya M.M., and Mekonnen M.M. 2011. The Water Footprint Assessment Manual: Setting the Global Standard. Earths can Press, London, UK.
11- Hoekstra A.Y., Mekonnen M.M., Chapagain A.K., Mathews R.E., and Richter B.D. 2012. Global monthly water scarcity: blue water footprints versus blue water availability. PLOS ONE, 7: e32688.
12- Hoekstra A.Y. 2016. A critique on the water-scarcity weighted water footprint in LCA. Ecological Indicators 66: 564–573.
13- Khalifeh S., Khoshnazar A. 2018. Evaluation of water quality in Zarrinehrood River using the standard quality index of Iran’s Surface Water Resources. Water & Wastewater Science & Engineering 3 (1): 22-34, spring. (In Persian with English abstract)
14- King J.M., Tharme R.E., and De Villiers M. 2000. Environmental flow assessments for rivers: manual for the building block methodology. In: De Villiers, M (Ed), Water Research Commission, Pretoria, South Africa.
15- Kirby J.M., Connor J., Ahmad M.D., Gao L., and Mainuddin M. 2014. Climate change and environmental water reallocation in the Murray Darling Basin: impacts on flows, diversions and economic returns to irrigation. Journal Hydrology.(In press).
16- Kumara B.K.H., and Srikantaswamy S. 2011. Environmental flow requirements in Tungabhadra River, Karnataka, India. National Resource 20(3): 193–205.
17- Liu J., Liu Q., and Yang H. 2016. Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecology Indicator 60: 434–441.
18- Liu J., Yang H., Gosling S.N., Kummu M., Florke M., Pfister S., Hanasaki N., Wada Y., Zhang X., Zheng C., Alcamo J., and Oki T. 2017. Water scarcity assessment in the past, present, and future. Earth's Future 5: 545-559.
19- Men B., Yu T., Kong F., and Yin H. 2014. Study on the minimum and appropriate instream ecological flow in Yitong River based on Tennant method. National Environmental Pollution Technology 13(3): 541–546.
20- Nilsalab P., Gheewala S.H., and Silalertruksa T. 2017. Methodology development for including environmental water requirement in the water stress index considering the case of Thailand. Journal of Cleaner Production 167: 1002–1008.
21- Nilsalab P., Gheewala S.H., and Pfister S. 2018. Method Development for Including Environmental Water Requirement in the Water Stress Index. Water Resource Management 32: 1585–1598.
22- Nilsalab P., and Gheewala S.H. 2019. Assessing the Effect of Incorporating Environmental Water Requirement in the Water Stress Index for Thailand. Sustainability, 11,152.
23- Pastor A.V., Ludwig F., Biemans H., Hoff H., and Kabat P. 2014. Accounting for envi-ronmental flow requirements in global water assessments. Hydrology Earth System Science 18(12): 5041–5059.
24- Pfister S., Koehler A., and Hellweg S. 2009. Assessing the environmental impacts of freshwater consumption in LCA. Environmental Science & Technology 43: 4098–4104.
25- Pfister S., Boulay A.M., Berger M., Hadjikakou M., Motoshita M., Hess T., Ridoutt B., Weinzettel J., Scherer L., Doll P., Manzardo A., Nunez M., Verones F., Humbert S., Buxmann K., Harding K., Benini L., Oki T., and Henderson A. 2017. Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) a critique on the water-scarcity weighted water footprint in LCA. Ecological Indicators 72: 352–359
26- Sandoval-Soils S., A.M.ASCE D. C., and McKinney M.ASCE. 2014. Integrated water management for environmental flows in the Rio Grande. Journal of Water Resources Planning and Management 140(3): 355-364.
27- Smakhtin V.U., Revenga C., and Döll P. 2004.Talking into account environmental water requirements in global-scale resources assessments. Comprehensive Assessment Reasearch Report 2. Colombo, Sri Lanka.
28- Smakhtin V.U., Revenga C., and Döll P. 2004. A pilot global assessment of environmental water requirements and scarcity. Water International 29: 307–317.
29- Smakhtin V.U., Shilpakar R.L., and Hughes D.A. 2006. Hydrology-based assessment of environmental flows: an example from Nepal. Hydrology Science Journal 51(2): 207–222.
30- Sullivan C.A., Meigh J.R., Giacomello A.M. 2003. The water poverty index: development and application at the community scale. National Resource Forum 27: 189–199.
31- Sun T., Yang Z.F., and Cui B.S. 2008. Critical environmental flows to support integrated ecological objectives for the Yellow River Estuary, China. Water Resource Management 22: 973-989.
32- Sun T., Xu J., and Yang Z.F. 2013. Environmental flow assessments in estuaries based on an integrated multi- objective method. Hydrology Earth System Science 17: 751-760.
33- Tennant D.L. 1976. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries 1: 6–10.
34- Tharme R.E. 2003. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Resource Application 19: 397–441.
35- Tharme R.E., and Smakhtin V.U. 2003. Environmental flow assessment in Asia: capitalizing on existing momentum. In: Proceedings of the First Southeast Asia Water Forum Chiang Mai Thailand 2: 301–313.
36- The Iranian Department of Environment 2016. Iran water quality index for surface water resources-conventional parameters (IRWQISC), https://www.doc.ir/portal/file/?696074/.
37- Van vliet M.T.H., Franssen W.H.P., Yearsley J.R., Ludwig F., Haddeland I., Lettenmaier D.P., and Kabat P. 2013. Global river discharge and water temperature under climate change. Global Environmental Change 23: 450–464.
38- Vörösmarty C.J., McIntyre P.B., Gessner M.O., Dudgeon D., Prusevich A., Green P., Glidden S., Bunn S.E., Sullivan C.A., Liermann C.R., and Davies P.M. 2010. Global threats to human water security and river biodiversity. Nature, 467: 555-561.
39- Xia J., Feng H.L., Zhan C.S., and Niu G.W. 2006. Determination of a reasonable percentage for ecological water use in the Haihe River Basin, China. Pedosphere 16(1): 33–42.
40- Xia X., Yang Z., and Wu Y. 2009. Incorporating Eco-environmental Water Requirement in Integrated Evaluation of Water Quality and Quantity. A study for the Yellow River. Water resource management, 23: 1067-1079. DOI: 10.1007/s11269-008-9315-z.
41- Yang Z., Cui B., and Liu J. 2005. Estimation methods of eco-environmental water requirements: Case study. Ser D Earth Sciences, Vol.48 No.8: 1280–1292. DOI: 10.1360/02yd0495.
42- Yang Z.F., Liu J.L., Cui B., and Zhong P. 2008. Eco-environmental water demands for the Baiyangdian Wetland. Front Environ Science Engineering China, 2(1): 73-80. DOI: 10.1007/s11783-008-0015-y.
43- Zeng Z., Liu J., Koeneman P.H., Zarate E., and Hoekstra P.D.I.A. 2012. Assessing water footprint at river basin level: a case study for the Heihe River Basin in Northwest China. Hydrology Earth System Science Discussion 9: 5779–5808.
44- Zeng Z., Liu J., and Savenije H.H.G. 2013. A simple approach to assess water scarcity integrating water quantity and quality. Ecology Indicator 34: 441–449.
45- Zhou L.I., Zhong Q.I., Xia Z.H., and Cheng Q.I. 2014. Calculation of Eco-environmental Water Demand for River Dalinghe Applied Mechanics and Materials, ISSN 1662782, 535: 276-280.
ارجاع به مقاله
سرچشمهب., بهمنشج., & رضاوردی نژادو. (2020). بررسی کمبود آب با درنظرگرفتن همزمان کمیت و کیفیت آب و جریان زیست¬محیطی زرینه¬رود. آب و خاک, 34(3), 565-577. https://doi.org/10.22067/jsw.v34i3.82187
نوع مقاله
علمی - پژوهشی