##plugins.themes.bootstrap3.article.main##

صغری توفیق داریوش رحیمی حجت الله یزدان‌پناه

چکیده

هدف از این مطالعه ارزیابی مدل CERES-WHEAT برای برآورد تبخیرتعرق، نیازآبی، عملکرد و کارایی مصرف آب محصول گندم در دشت شهرکرد است. تحقیقات مزرعه­ای برای انتخاب مناسب‌ترین روش‌های کاشت یا برآورد محصول معمولا هزینه بر بوده و نیاز به زمان طولانی دارد. مدل‌های شبیه‌سازی رشد محصول مناسب‌ترین روش برای کم کردن این هزینه و زمان می‌باشند. مدل CERES-WHEAT یکی از کارآمدترین مدل­ها برای شبیه­سازی رشد گیاه گندم است. برای تعیین کارایی و انتخاب مدل بهینه برآورد تبخیرتعرق و عملکرد محصول گندم از داده­های لایسیمتر ثبت شده ایستگاه تحقیقات کشاورزی استفاده شد. آنالیز حساسیت روش­های برآورد تبخیرتعرق فائو پنمن مونتیث و پرستلی تیلور مدل CERES-WHEAT، مشخص کرد که روش فائو-پنمن-مانتیث با مقادیر  MADبرابر 95/0 ، MSEبرابر 95/0 ، RMSE برابر 57/1 و ضریب همبستگی 0/97 روش بهینه­ای برای برآورد تبخیر تعرق محصول گندم در دشت شهرکرد است. نتایج آزمون آماری نشان داد که عملکرد محصول با این روش دارای حداقل خطا با داده­های مشاهداتی بود. خروجی­های مدل نشان داد روش فائو-پنمن-مونتیث مدل CERES-WHEAT کارایی بالایی برای شبیه‌سازی رشد و برآورد تبخیر تعرق گندم در شرایط آب­و­هوایی شهرکرد دارد.

جزئیات مقاله

کلمات کلیدی

پرستلی تیلور, تبخیرتعرق, فائو پنمن مونتیث, لایسیمتر, DSSAT-CERES-WHEAT

مراجع
1. Abbasi S., Mohammadi H., and Dini A. 2009. Predict of Iranian oilseeds of price (Case Study: Maize and Soybeans), Quarterly Journal of Economic Research and Policies, 17(49):53-41. (In Iranian)
2. Anar M.J, Lin Zh, Hoogenboom G,Shelia V, Batchelor W.D, Teboh J.M, Ostlie M, Schatz B.G, Khan M .2019.Modeling growth, development and yield of Sugarbeet using DSSAT, Agricultural Systems, 169:58-70
3. Andarzian B, Bakhshande A., Banayan M., and Imam Y. 2008. Evaluation of CERES-Wheat Simulation Model under Climatic Conditions of Ahwaz, Iranian Journal of Field Crops Researches, 6(1):11-22. (In Iranian)
4. Anothai, J., Soler C.M.T., Greenb A., Trout T.J., and Hoogenboom G. 2013. Evaluation of two evapotranspiration approaches simulated with the CSM–CERES–Maize model under different irrigation strategies and the impact on maize growth, development and soil moisture content for semi-arid conditions, Agricultural and Forest Meteorology, 176: 64–76.
5. Attia, A., Rajan N., Xue Q., Nair Sh., Ibrahim A., and Hays D. 2016. Application of DSSAT-CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains, Agricultural Water Management, 165: 50–60.
6. Azizi G., Safarrad T., Mohammadi H., Faraji Sabokbar H.A. 2016. Evaluation and comparison of re-analysis rainfall data for use in Iran. Physical Geography Research, 48(1): 49 – 33. (In Iranian)
7. Chun-hong QU, Xiang-xiang LI, Hui JU, Qin LIU .2019. The impacts of climate change on wheat yield in the Huang-HuaiHai Plain of China using DSSAT-CERES-Wheat model under different climate scenarios, Agricultural Water Management, 97: 1195-1209.
8. Corbeels M, Chirat G, Messad S, Thierfelder Ch .2016. Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture, European Journal of Agronomy, 76: 41-53.
9. Dallacort, R., De Freitas P.S.L., Faria R.T., Goncalves A.C.A., Rezende R., and Guimarães R. M.L. 2011. Simulation of bean crop growth, evapotranspiration and yield in Paraná State by the CROPGRO-Drybean model, Acta Scientiarum. Agronomy, 33:4299-436.
10. DeJongea, K.C., Ascough J.C., Andales A.A., Hansenc N.C., Garcia L.A., and Arabi M. 2012. Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation, Agricultural Water Management, 115: 92–103.
11. DeJonge K.C, Thorp K.R .2017. Implementing standardized reference evapotranspiration and dual crop coefficient approach in the DSSAT cropping system model, American Society of Agricultural and Biological Engineers, 60(6):1965-1981.
12. Delghandi, M., Andarzian B., Boroumand Nasab S., Massah Bavani A., and Javaheri E. 1393. Evaluation of CERES-Wheat model DSSAT 4.5 in simulating growth, yield and phonological stages of wheat under different management conditions of water allocation in the field (Case study: Ahvaz city), Journal of Water and Soil (Agriculture Sciences and Technology), 28 (1):82-91. (In Iranian)
13. Dias M.P.N.M, Navaratne C.M, Weerasinghe K.D.N, Hettiarachchi R.H.A.N .2016. Application of DSSAT Crop Simulation Model to Identify the Changes of Rice Growth and Yield in Nilwala River Basin for Mid-centuries under Changing Climatic Conditions, Procedia Food Science, 6:159-163.
14. Doukoohi H., Ghaysari M., Mousavi S.F., and Mirlatifi S.M. 2012. Simulation of Soil Moisture in Low Irrigation Conditions Using DSSAT Model, Journal of Water and Irrigation Management (Journal of Agriculture), 2(1): 1-14. (In Iranian)
15. Ebrahimi Pak N.A., and Sohrab S .1999. Determination of actual evapotranspiration of wheat using Lysimeter in Shahrekord, Shahrekord Agricultural Meteorological Research Center. (In Iranian)
16. Feizbakhsh M.T., Kamkar B., Mokhtarpour H., and Asadi M.E. 2015. Calibration and evaluation of CERES-Maize model in Gorgan weather conditions; Journal of Crop Production, 8(4): 49-25. (In Iranian)
17. Garibay V.M, Kothari K , Ale S, Gitz III D.C, Morgan G.D, Clyde L.Munster C.L. 2019. Determining water-use-efficient irrigation strategies for cotton using the DSSAT CSM CROPGRO-cotton model evaluated with in-season data, Agricultural Water Management, 223, 105695PP.
18. Jiang Y, Zhang L, Zhang B, He Ch, Jin X , Bai X. 2016. Modeling irrigation management for water conservation by DSSAT-maize model in arid northwestern China, Agricultural Water Management, 177: 37-45.
19. Kassie B.T, Asseng S, Porter Ch.H, Royce F.S (2016)Performance of DSSAT-Nwheat across a wide range of current and future growing conditions, European Journal of Agronomy, Vol 81, PP 27-36.

20. Kimball B.A, Boote K.J, Hatfield J.L, Ahuja L.R, Stockle C, Archontoulis S, Baron Ch, Basso B, Bertuzzi P ,Constantin J, Deryng D, Dumont B, Durand J.L, Ewert F, Gaiser T, Gayler S, .Hoffmann M.P, Jian Q, Kim S.H , Lizaso J, Moulin S, Nendel C , Parker P, Palosuo T , Priesack E , Qi Zh , Srivastava A, Stella T , Tao F, Thorp K.R , Timlin D , Twine T.E , Webber H , Willaume M, Williams K. 2019. Simulation of maize evapotranspiration: An inter-comparison among 29 maize models, Agricultural and Forest Meteorology, 271: 264-284.

21. Li Sh, Lei Y, Zhang Y, Liu J, Shi X, Jia H, Wang Ch, Chen Fu, Chu Q. 2019. Rational trade-offs between yield increase and fertilizes inputs are essential for sustainable intensification: A case study in wheat–maize cropping systems in China, Science of The Total Environment, 679: 328-336.
22. Malik W, Isla R, Dechmi F.2019. DSSAT-CERES-maize modelling to improve irrigation and nitrogen management practices under Mediterranean conditions, Agricultural Water Management, 213: 298-308.
23. Malik W, Dechmi F. 2019. DSSAT modelling for best irrigation management practices assessment under Mediterranean conditions, Agricultural Water Management, 216: 27-43.
24. Mu Y., Liu X., and Wang L. 2018. A Pearson’s correlation coefficient based decision tree and its parallel implementation, Information Sciences, 435:40–58.
25. Nabavi Chashmi S.A., and Hasanzadeh A. 2011. Evaluation of the Efficiency of the MA Index in Technical Analysis in Stock Price Forecast, Journal of Financial Knowledge of Securities Analytics, 4,10 (2) : 106-83. (In Iranian)
26. Negm L.M, Youssef M.A, Jaynes D.B. 2017. Evaluation of DRAINMOD- DSSAT simulated effects of controlled drainage on crop yield, water balance, and water quality for a corn-soybean cropping system in central Iowa, Agricultural Water Management, 187: 57-68.
27. Ngwira A.R, Aune J.B, Thierfelder C.2014. DSSAT modelling of conservation agriculture maize response to climate change in Malawi, Soil and Tillage Research, 143: 85-94.
28. Rahmani M., Jami-al-Ahmadi Feli Shahidi M., and Hadizadeh Azghandi M. 2015. Effect of climate change on the length of growth stages and the water requirement of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) (Case study: Birjand Plain), Journal of Agroecology, 2007, 7 (4), pp. 443-460. (In Iranian)
29. Rezaei, M., Shahanazari A., Raeini Sarjaz M., and Vazifeh Doust M. 2015. Evaluation of the Efficiency of the CERES-Rice Model in Estimating the Efficiency and yield of Rice Water Large-scale, Iranian Journal of Irrigation and Drainage, 9( 2):291-283. (In Iranian)
30. Rezzoug W., Gabrielle B., Suleiman A., and Benabdeli K. 2008. Application and evaluation of the DSSAT-wheat in the Tiaret region of Algeria, African Journal of Agricultural Research, 3:284-296.
31. Shrivastava S., Kar S. C., and Sharma A.R. 2018. The DSSAT model simulations of soil moisture and evapotranspiration over central India and comparison with remotely-sensed data, Modeling Earth Systems and Environment, 4:27–37.
32. Thorp, K.R., DeJonge K.C., Kaleita A.L., Batchelor W.D., and Paz J.O. 2008. Methodology for the use of DSSAT models for precision agriculture decision support, computers and electronics in agriculture, 64: 276–285.
33. Yakoub A, Lloveras J, Biau A, Lindquist J.L, Lizaso J.I. 2017. Testing and improving the maize models in DSSAT: Development, growth, yield, and N uptake, Field Crops Research, 212: 95-106.
34. Yashuang Mu, Liu X., Wang L. 2018. A Pearson’s correlation coefficient based decision tree and its parallel implementationʼ, Information Sciences, 435:40–58.
35. Zand-Kermi S., and Darand M. 2016. Evaluation of the accuracy of rainfall data of the Global Climatology Center on Iran, Iranian Journal of Geophysics, 10(5):95-113. (In Iranian).
ارجاع به مقاله
توفیقص., رحیمید., & یزدان‌پناهح. ا. (2020). شبيه‌سازي عملكرد، تبخیرتعرق، نياز آبي و كارآيي مصرف آب گندم با استفاده از مدل CERES-WHEAT-DSSAT در دشت شهرکرد. آب و خاک, 34(3), 579-592. https://doi.org/10.22067/jsw.v34i3.84847
نوع مقاله
علمی - پژوهشی