تغییر شاخص‌های مغناطیسی و اکسیدهای آهن خاک در پی تغییر کاربری (مطالعه موردی: دشت مختار استان کهگیلویه و بویراحمد)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه یاسوج

2 دانشگاه شیراز

چکیده

پژوهش حاضر به منظور بررسی اثرات تغییر کاربری اراضی و شیب بر برخی ویژگی‌های خاک با تمرکز بر شاخص­های مغناطیسی و اکسیدهای آهن خاک در منطقه ­مختار یاسوج انجام گرفت. در این منطقه از چهار کاربری جنگل متراکم، جنگل تُنُک، اراضی فرسوده و کشت دیم و در هر کاربری از دو کلاس شیب 15-0 و 30-15 درصد و در هر کاربری از 10 نقطه سطحی (عمق صفر تا 15 سانتی­متر) به صورت تصادفی (مجموعا40 نمونه) نمونه­برداری انجام گرفت.  میانگین ماده آلی در کاربری جنگل متراکم (24/5%) به طور معنی‌داری بیشتر از سایر کاربری‌ها بوده است. جنگل‌تراشی و عملیات زراعی بر روی اراضی شیب­دار، موجب سبک­تر شدن بافت خاک و کاهش معنی­دار مقدار رس در کاربری زراعی شده است. همچنین چگالی ظاهری و کربنات کلسیم معادل با تغییر کاربری از جنگل متراکم به کاربری زراعی افزایش یافته‌اند. پذیرفتاری مغناطیسی (χlf) خاک به میزان زیادی تحت تأثیر تغییر کاربری و به میزان کمتر تحت تأثیر موقعیت شیب بوده است. تغییرات کاربری از جنگل متراکم به سایر کاربری­ها کاهش معنی­داری (25 تا 100 درصد) بر χlf داشته است. با توجه به مقادیر 9/1 تا 2/7 درصدی پذیرفتاری مغناطیسی وابسته به فرکانس (χfd)، این خاک­ها دارای مقادیر کم تا متوسط ذرات پدوژنیک سوپرپارامگنتیک بوده­اند. همبستگی نسبتاً بالایی بین χlf با برخی ویژگی­های از جمله شکل­های آهن، ماده آلی، بافت خاک و میزان کربنات کلسیم مشاهده شد. با اندازه­گیری χlf که امکان اندازه­گیری سریع و ارزانی دارد، می­توان مناطق حساسی را که در معرض تخریب زیادی بوده، شناسایی و اقدامات مدیریتی مناسب را اتخاذ نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Changes in Soil Magnetic Properties and Iron Oxides Following Land Use Change (Case Study: Mokhtar Plain, Kohgilouye Province)

نویسندگان [English]

  • H.R. Owliaie 1
  • E. Adhami 1
  • M. Najafi Ghiri 2
1 Department of Soil Science, Yasouj University, Yasouj, Iran
2 Shiraz University
چکیده [English]

Introduction
Global observations have confirmed that in recent decades, forests have been converted into agricultural land at a swift pace; this is a major global concern. Forests around the world have also experienced severe disturbances due to other anthropogenic activities. The conversion of forests to cropland often results in soil degradation. Slope gradient and land use change are known to influence soil quality; therefore, the assessment of soil quality is important in determining sustainable land-use and soil-management practices. Magnetic susceptibility (χlf) measurements are widely used to study soil-forming processes. Many efforts have been made to correlate soil magnetic susceptibility with different soil properties, such as topography, parent material, Fe oxide forms, etc. The Yasouj area of Kohgilouye Province is one of the most densely forested areas in Zagros mountainous region. Parts of the area have been cultivated to feed the growing population, which has led to forest degradation. The objectives of this study were to assess some soil properties focusing on soil χlf and Fe- oxides forms in different land uses and slope positions.
Materials and Methods
 Forty soil samples were taken from dense forest, sparse forest, eroded lands and dryland farming from different slops (0-15 and 15-30 percent) in Mokhtar Plain, west of Yasouj city. Soil samples were taken from the depth of 0–15 cm in a completely randomized design with five replications. Soil moisture and temperature regimes in the study area are xeric and thermic, respectively. Particle size distribution was determined by the hydrometer method and soil organic matter, CaCO3 equivalent and bulk density were determined using standard procedures. Fe (Feo) were extracted by acid ammonium oxalate, using a single 4-h extraction at pH 3 in the dark. Total free iron (Fed) was extracted with the CBD method. The total Fe contents (Fet) in the soil samples were determined after extraction with 5 mol L-1 HNO3. Magnetic susceptibility of the soils was measured at low (0.46 kHz; χlf) and high (4.6 kHz; χhf) frequencies, respectively; using a Bartington MS2 dual-frequency sensor, with approximately 10 g of air-dry soil in polyethylene vials. The percentage of frequency-dependent magnetic susceptibility (χfd%) was calculated to study the size of magnetic crystals in soils and the abundance of pedogenic ferrimagnetic in SP-SSD (~0.03 μm) boundary.
Results and Discussion
The results of this study showed that the land use and slope positions were among the important factors affecting the change of soil properties in this area. Land use change along with the reduction of organic matter reduced the stability of aggregates and increased land erosion. This process caused the loss of clay particles and magnetic minerals and affected many soil properties. Organic matter as an important indicator of soil quality, showed a decrease of about 3 times as a result of land use change from dense forest to eroded lands following by an increase in bulk density and a decrease in soil permeability and other soil quality indicators. Long-term afforestation and agricultural activities on sloping lands changed the soil texture from a class of silty loam in the forest to a lighter class of silty loam in agricultural use. Soil magnetic susceptibility, which is a function of soil magnetic particles was greatly affected by land use change and to a lesser extent by slope position. Due to the fact that magnetic susceptibility is influenced by factors such as soil texture, drainage class, erosion conditions, magnetic mineral contents, soil evolution conditions, land use changes from forest to other uses had significant effects (about 2 times) on χlf. Significant decrease in the amount of calcium carbonate in low slope positions was another reason for the increase in magnetic susceptibility in these positions. According to the measured values ​​of χfd (ranged from 1.9 to 7.2%), the magnetic particles of the soils had low to moderate amounts of superparamagnetic (SP) particles, which indicates the combined effect of pedogenic superparamagnetic ultrafine particles and  lithogenic (inherited) magnetic particles in χlf of the soils. The effect of slope on Fe forms (Feo, Fed and Fet) has been significant (p < 0.01) in almost all land uses. Due to the relatively high correlation of χlf with some soil properties such as Fe forms, soil clay, the amount of diamagnetic compounds including calcium carbonate in the studied soils, it is possible to estimate the value of these soil properties using χlf, which is a quick and cost-effective approach. Overall, it seems that magnetic susceptibility could be applied successfully to estimate some soil properties in hilly regions of Zagros Mountains of southwestern Iran, especially for monitoring the consequences of land use changes. It should also be noted that any change in the use of the area should be defined in accordance with the potential of the land in the long term to prevent a reduction in soil quality.

کلیدواژه‌ها [English]

  • Fe-oxides
  • Magnetic susceptibility
  • Land use change
  • Soil quality
  • Slope position
  1. 1- Adélia N., Nunes António C., de Almeida Celeste O., and Coelho A. 2011. Impacts of land use and cover type on runoff and soil erosion in a marginalarea of Portugal. Applied Geography 31: 687-699. https://doi.org/10.1016/j.apgeog.2010.12.006.

    2- Afshari A., Khademi H., and Ayoubi S.H. 2015. Lithological and anthropogenic factors affecting magnetic properties of calcareous soils in Zanjan. Journal of Water and Soil Conservation 22(3): 73-88. (In Persian with English abstract)

    3- Amundson R., Asefaw Berhe A., Hopmans  J.W., Olson C., Ester Sztein  A., and Sparks D.L. 2015. Soil and human security in the 21st century. Science 348: 1–6. DOI: 10.1126/science.12610.

    4- Bewket W., and Stroosnijder L. 2003. Effects of agroecological land use succession on soil properties in Chemoga watershed, Blue Nile basin, Ethiopia. Geoderma 111: 85-98.

    5- Blake G.R., and Hartge K.H. 1986. Bulk density. In: A. Klute, (Ed.) Methods of Soil Analysis. Part I: Physical and Mineralogical Methods, 2ed. Agronomy Monograph No 9. American Society of Agronomy, Madison, WI, pp. 363-375.

    6- Blundell A., Dearing J.A., Boyle J.F., and Hannam J.A. 2009. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth-Science. Review 95: 158–188. https://doi.org/10.1016/j.earscirev.2009.05.001.

    7- Carter M.R., Gregorich E.G., and Angers D.A. 1998. Organic C and N storage and organic C fractions in adjacent cultivated and forest soils of eastern Canada. Soil Tillage Research 47: 253-261.

    8- Celik I. 2005. Land use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil Tillage Research 83: 270-277.

    9- Day R. 1965. Particle fractionation and particle size analysis. P: 545-566. In A. Black et al. (ed.) Methods of Soil Analysis. Part 1. ASA and SSSA, Madison, WI.

    10- De Jong E., Nestor P.A., and Pennock D.J. 1998. The use of magnetic susceptibility to measure long-term soil redistribution. Catena 32: 23–35.

    11- De Jong E., Pennock D.J., and Nestor P.A. 2000. Magnetic susceptibility of soils in different slope positions in Saskatchewan. Catena 40(3): 291-305. https://doi.org/10.1016/S0341-8162(00)00080-1.

    12- Dearing J. 1999. Environmental Magnetic Susceptibility: Using the Bartington MS2 System. Chi Publishing, Keniloworth, England.

    13- Dearing J.A., Maher B.A., and Oldfield F. 1985. Geomorphological linkages between soils and sediments: The role of magnetic measurements. In: K.S. Richards, R.R. Arnett, S. Ellis, (eds.), Geomorphology and soils. London: George Allen and Unwin 245–266. https://doi.org/10.4324/9780429320781-13.

    14- Doran J.W., and Parkin T.B. 1994. Defining and assessing soil quality, In: J.W. Doran et al. (eds.) Defining soil quality for a sustainable Environment, Soil Science Society of America, Special Publication, NO.35, Madison, Wisconsin, USA, pp: 3-21.

    15- Enjavinejad M., Owliaie H.R., and Adhami E. 2017. Study of magnetic susceptibility of the soils of a toposequence case study: Beshar Plain, Kohgilouye Province. Journal of Water and Soil 31(2): 478-489. (In Persian with English abstract)

    16- Evrendilek F., Celik I., and Kilic S. 2004. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. Journal Arid Environment 59: 743-752. https://doi.org/10.1016/j.jaridenv.2004.03.002.

    17- Feng Z.D., and Johnson W.C. 1995. Factors affecting the magnetic susceptibility of a loess-soil sequence, Barton County, Kansas, USA. Catena 24: 25-37.

    18- Fine P., Singer M.J., Laven R., Verosub K., and Southard R.J. 1989. Role of pedogenesis in distribution of magnetic susceptibility in two California chronosequences. Geoderma 44: 287-306. https://doi.org/10.1016/0016-7061(89)90037-2.

    19- Hajabbasi M.A., Jalalian A., and Karimzadeh H.R. 1997. Deforestation effects on soil physical and chemical properties, Lordegan, Iran. Plant and Soil 190: 301-308. https://doi.org/10.1023/A:1004243702208.

    1. Holmgren G.G.S. 1976. A rapid citrate-dithionate extractable iron procedure. Soil Science Society America Proceeding 31: 210-211.

    21- Hussain I., Olson K.R., and Jones R.L. 1998. Erosion patterns on cultivated and uncultivated hill slopes determined by soil fly ash contents. Soil Science 163(9): 726-738.

    22- Islam K.R., and Weil R.R. 2000. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture Ecosystem Environment 79: 9-16.

    23- Jordanova N. 2017. Soil magnetism. Application in pedology, environmental science and agriculture. ISBN: 978-0-12-809239-2. 450p.

    24- Kanu M.O., Meludu O.C., and Oniku S.A. 2014. Comparative study of top soil magnetic susceptibility variation based on some human activities. Geofísica Internacional 53(4): 411-423. https://doi.org/10.1016/S0016-7169(14)70075-3

    25- Lal R. 1995. Global soil erosion by water and carbon dynamics. p. 131-142. In: R. Lal., J. Kimble., E. Levine., and B.A. Stewart (Eds.), Soils and Global Change, Advances in Soil Science CRC Press, Boca Raton, FL, USA.

    26- Lal R., Mokma D., and Lowery B. 1999. Relation between soil quality and erosion, In: R. Lal (ed.). Soil Quality and Soil Erosion, 39-56, Soil and Water Conservation Society and CRC Press, Boca Raton.

    27- Lement M., Karltun E., and Olsson M. 2005. Assessing soil chemical and physical property responses to deforestation and subsequent cultivation in smallholders farming system in Ethiopia. Agriculture, Ecosystems & Environment 105: 373-386.

    28- Lu S.G., Chen D.J. Wang S.Y., and Liu Y.D. 2012. Rock magnetism investigation of highly magnetic soil developed on calcareous rock in Yun-Gui Plateau, China: evidence for pedogenic magnetic minerals. Journal Applied Geophysics 77: 39-50. https://doi.org/10.1016/j.jappgeo.2011.11.008.

    29- Lu S.G., Xue Q.F., Zhu L., and Yu J.Y. 2008. Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China. Catena 73: 23–33.

    30- Magiera T., Strzyszcz Z., Kapicka A., and Petrovsky E. 2006. Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma 130(3): 299–311.

    31- McKeague J.A., Wang C., Ross G.J., Acton C.J., Smith R.E., Anderson D.W., Petapiece W.W., and Lord T.M. 1981. Evaluation of criteria for Argillic horizons (Bt) of soils in Canada. Geoderma 25: 63-74.

    32- Mehmandoost F., Owliaie H.R., Adhami E., and Naghiha R. 2020. Changes in biological, chemical and soil fertility characteristics as a result of land use change (A case study: Mokhtar region of Yasouj). Journal Water Soil Science 23(4): 141-154. (In Persian with English abstract) 

    33- Moghbeli Z., Owliaie H.R., Adhami E. Najafi-Ghiri M., and Sanjari S. 2021. Pedogenesis and spatial distribution of soil magnetic properties along a lithotoposequence in an arid region of Southern Iran. Catena 198(5): 104979. https://doi.org/10.1016/j.catena.2020.104979.

    34- Moghbeli Z., Owliaie H.R., Sanjari S., and Adhami E. 2019. Genetic study of soil-landscape relationship in arid region of Faryab, Kerman Province. Journal of Water and Soil 33(2): 333-347. (In Persian with English abstract)

    35- Mokhtari Karchegani P., Ayoubi S., Lu S.G., and Honarju N. 2011. Use of magnetic measures to assess soil redistribution following deforestation in hilly region. Journal of Applied Geophysics 75: 227–236. https://doi.org/10.1016/j.jappgeo.2011.07.017.

    36- Mullins C.E. 1977. Magnetic susceptibility of the soil and its significance in soil science-A review. Journal Soil Science 28: 223-246.

    37- Munch J.C., and Ottow J.C.G. 1983. Reductive transformation mechanism of ferric oxides in hydromorphic soils. Environment Biogeochemstry Ecology Bull 35: 383-394.

    38- Nasiri E., Owliaie H.R., Safari Y., and Sedghi-Asl M. 2019. Geostatistical assessing of some soil properties variability due to the oak land deforesting in Mokhtar Plain, Yasouj. Applied Soil Research 7(3): 83-97. (In Persian with English abstract)

    39- Ogunkunle A.O., and Eghaghara O.O. 2007. Influence of land use on soil properties in a forest region of Southern Nigeria. Soil Use and Management 8(3): 121–124. https://doi.org/10.1111/j.1475-2743.1992.tb00906.x.

    40- Owliaie H.R., and Najafi Ghiri M. 2015. Effects of topography and land use on the soil magnetic susceptibility, Case study: Madvan Plain, Kohgilouye Province. Journal of Water and Soil 18(70): 159-170.

    41- Owliaie H.R., Adhami E., Najafi Ghiri M., and Shakeri S. 2018. Pedological investigation of a Litho-Toposequence in a semi-arid region of Southwestern Iran. Eurasian Soil Science 51(12): 1447–1461.

    42- Owliaie H.R., and Najaf Ghiri M. 2018. The Magnetic Susceptibility and Iron Oxides of Aquic Soils in Southern Iran. Eurasian Soil Science 51(10): 1252–1265. https://doi.org/10.1134/S1064229318100095.

    43- Owliaie H.R. 2014. A magnetic investigation along a NE-SW transect of the Yasouj Plain, Southwestern Iran. Archives of Agronomy and Soil Science 60(7): 1015-1024. https://doi.org/10.1080/03650340.2013.855724.

    44- Owliaie H.R., and Rezaei S. 2014. Effect of topography and land use on genesis, chemical forms of Fe and Mn, and clay mineralogy of soils of Yasouj western plain. Journal of Water and Soil Conservation 21(2): 109-129. (In Persian with English abstract)

    45- Owliaie H.R., Heck R.J., and Abtahi A. 2006. The magnetic susceptibility of soils in Kohgilouye, Iran. Canadian Journal Soil Science 86: 97-107. https://doi.org/10.4141/S05-003.

    46- Page A.L., Miller R.H., and Keeney D.R. 1982. Methods of Soil Analysis, Second edition. Part 2: Chemical and Biological Properties. Soil Science Society of America Journal Publisher.

    47- Pathak P., Sahrawat K.L., Rego T.J., and Wani S.P. 2004. Measurable biophysical indicators for impact assessment: changes in soil quality. In: B. Shiferaw, H.A. Freeman., and S.M. Swinton. (Eds.), Natural Resurce Management in Agriculture, Methods for Assessing Economic and Environmental Impacts, ICRISAT. Patancheru, India. https://doi.org/10.1079/9780851998282.0053.

    48- Quijano L., Gaspar L., López-Vicente M., Chaparr A.E., Machín J., and Navas A. 2011. Soil magnetic susceptibility and surface topographic characteristics in cultivated soils. Latin mag Letters, Volume 1, Special Issue, D10, 1-6. Proceedings Tandil, Argentina.

    49- Rahimi M.R., Ayoubi S., and Abdi M.R. 2013. Magnetic susceptibility and Cs-137 inventory as influenced by land use change and slope position in a hilly, semiarid region of west-central Iran. Journal of Applied Geophysics 89: 68–75. https://doi.org/10.1016/j.jappgeo.2012.11.009.

    50- Sadiki A., Faleh A., Navas A., and Bouhlassa S. 2009. Using magnetic susceptibility to assess soil degradation in the Eastern Rif, Morocco. Earth Surface Processes and Landforms 34: 2057–2069

    51- Schwertmann U., and Taylor R.M. 1989. Iron oxides. PP. 379-438. In: J.B. Dixon and S.B. Weed (Eds.), Minerals in soil environment. Soil Science Society of America, Madison, USA.

    52- Singer M.J., Verousb K.L., Fine P., and Tempas J. 1996. A conceptual model for the enhancement of magnetic
    susceptibility in soils. Quaternary International 34-36: 243-248.

    53- Sparks D.L.1996. Methods of soil analysis. Part 3 - chemical methods, Soil Science Society of America, Wisconsin, Madison 1085-1121.

    54- Thompson R., and Oldfield F. 1986. Environmental Magnetism. Allen and Unwin, London. 227p.

    55- Vacca S., Loddo G., Ollesch R., Puddu G., Serra D., and Tomasi A. 2000. Measurement of runoff and soil erosion in three areas under different land use in Sardinia, Italy. Catena 40: 69–92. https://doi.org/10.1016/S0341-8162(00)00088-6.

    56- Vafaiezadeh R., Ayoubi SH., Mosadeghi M.R., and Yousefifard M. 2016. Slope and land use changing effects on soil properties and magnetic susceptibility in hilly lands, Yasouj region. Journal of Water and Soil 30(2): 632-642. (In Persian with English abstract)

    57- Valaee M., Ayoubi Sh., Khormali F., Gao Lu Sh., and Karimzadeh H.R. 2016. Using magnetic susceptibility to discriminate between soil moisture regimes in selected loess and loess-like soils in northern Iran. Journal of Applied Geophysics 127: 23–30 https://doi.org/10.1016/j.jappgeo.2016.02.006.

    58- Yang P., Mao R., and Shao H. 2009. An investigation on magnetic susceptibility of hazardous saline-alkaline soils from the contaminated Hai River Basin, China. Journal of Hazardous. Materials 172: 494-497.

CAPTCHA Image
دوره 36، شماره 2 - شماره پیاپی 82
خرداد و تیر 1401
صفحه 267-282
  • تاریخ دریافت: 25 بهمن 1400
  • تاریخ بازنگری: 09 اسفند 1400
  • تاریخ پذیرش: 14 فروردین 1401
  • تاریخ اولین انتشار: 15 فروردین 1401