1- داننده مهر ع. و مجدزاده طباطبائی م.ر. 1389. بررسی تأثیر توالی دبی روزانه در پیش بینی جریان رودخانه ها با استفاده از برنامه ریزی ژنتیک. -نشریه آب و خاک دانشگاه فردوسی مشهد. 24(2): 325-333.
2- فربودنام ن.، قربانی م.ع. و اعلمی م.ت. 1388. پیش بینی جریان رودخانه با استفاده از برنامه ریزی ژنتیک (مطالعه موردی: رودخانه لیقوان). مجله دانش آب و خاک (دانشگاه تبریز). 19(4): 123-107.
3- قبادیان ر.، قربانی م.ع. و خلج م. 1392. بررسی عملکرد روش برنامه ریزی بیان ژن در روندیابی سیلاب رودخانه زنگمار در مقایسه باروش موج دینامیکی. نشریه اب و خاک. 27 (3): 602-592.
4- قربانی م.ع.، شیری ج. و کاظمی ه. 1389. تخمین بیشینه، متوسط و کمینه دمای شهر تبریز با استفاده از روش های هوش مصنوعی. مجله دانش آب و خاک (دانشگاه تبریز). 20(1): 104-87.
5- نیک بخت شهبازی ع.ر. 1388. کاربرد ماشین بردار پشتیبان در پیش بینی جریان رودخانه. هشتمین کنفرانس هیدرولیک ایران. دانشکده فنی دانشگاه تهران.
6- Adamowski J., and Prasher S.O. 2012. Comparison of machine learning methods for runoff forecasting in mountainous watersheds with limited data. Journal of Water and Land Development, 17(7-8): 89–97 .
7- Alvisi S., Mascellani G., Franchini M., and Bardossy A. 2005. Water level forecasting through fuzzy logic and artificial neural network approaches. J Hydrol Earth Sys Sci., 2:1107-1145.
8- Aytek A., and Kisi O. 2008. A genetic programming approach to suspended sediment modeling. Journal of Hydrology 351: 288-298.
9- Chen S.T., and P.S. Yu .2007. Real-time probabilistic forecasting of flood stages. Journal of Hydrology, 340: 63-77.
10- Ferreira C. 2001. Gene expression programming: a new adaptive algorithm for solving problems.Complex Syst 13: 87-129.
11- Ghorbani M.A., Kisi O. and Aalinezhad M. 2010. A probe into the chaotic nature of daily streamflow time series by correlation dimension and largest Lyapunov methods Applied Mathematical Modelling, 34: 4050–4057
12- Guven A. 2009. Linear genetic programming for time-series modeling of daily flow rate. J. Earth Syst. Sci, 118(2):157-173.
13- Hamel L. 2009. Knowledge Discovery with Support Vector Machines, Hoboken, N.J. John Wiley.
14- Khu S.T., Liong S.Y., Babovic V., Madsen H., and Muttil N. 2001. Genetic programming and its application in real- time runoff forming. Journal of American Water Resources Association, 37 (2): 439-451.
15- Koza J.R. 1992. Genetic Programming: on the programming of computers by means of natural selection. Cambridge, MA: MIT Press.
16- Pai P.F., and Hong W.C. 2007. A recurrent support vector regression model in rainfall forecasting. Hydrological Process, 21:819-827.
17- Vapnik V.N. 1998. Statistical Learning Theory. Wiley, New York.
18- Yu P.S., Chen S.T., and Chang I.F. 2005. Flood stage forecasting using support vector machines. Geophysical Research Abstracts,Vol.7,04176.
19- Yu P.S, Chen S.T., and Chang I.F. 2006. Support vector regression for real-time flood stage forecasting. Hydrology, 328: 704-716.
20- Zahiri A., and Azamathulla H.Md. 2014. Comparison between linear genetic programming and M5 tree models to predict flow discharge in compound channels. Neural Comput & Applic, 24:413–420.
Send comment about this article