Document Type : Research Article

Authors

University of Tehran

Abstract

Considering the necessity of desirable operation of limited water resources and assuming the significant role of dams in controlling and consuming the surface waters, highlights the advantageous of suitable operation rules for optimal and sustainable operation of dams. This study investigates the hydroelectric supply of a one-reservoir system of Karoon3 using nonlinear programming (NLP), genetic algorithm (GA), genetic programming (GP) and fixed length gen GP (FLGGP) in real-time operation of dam considering two approaches of static and dynamic operation rules. In static operation rule, only one rule curve is extracted for all months in a year whereas in dynamic operation rule, monthly rule curves (12 rules) are extracted for each month of a year. In addition, nonlinear decision rule (NLDR) curves are considered, and the total deficiency function as the target (objective) function have been used for evaluating the performance of each method and approach. Results show appropriate efficiency of GP and FLGGP methods in extracting operation rules in both approaches. Superiority of these methods to operation methods yielded by GA and NLP is 5%. Moreover, according to the results, it can be remarked that, FLGGP method is an alternative for GP method, whereas the GP method cannot be used due to its limitations. Comparison of two approaches of static and dynamic operation rules demonstrated the superiority of dynamic operation rule to static operation rule (about 10%) and therefore this method has more capabilities in real-time operation of the reservoirs systems.

Keywords

1- اکبری الاشتی ح.، و بزرگ حداد ا. 1391. مقایسه ی شبیه ها و روش های مختلف پیش بینی ماهانه ی جریان مبتنی بر هوش مصنوعی. فصل-نامه مهندسی منابع آب. 13(5): 43-29.
2- بلوری یزدلی ی. 1387. تأثیر استخراج منحنی فرمان سیستم های چند مخزنی با اهداف مختلف در بازده کلی طرح. پایان نامه کارشناسی ارشد، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران.
3- Banzhaf W., Nordin P., Keller R. and Francone F.D. 1998. Genetic programming: an introduction, Morgan Kaufmann Publishers Inc, San Fransisco, CA, USA.
4- Chen L. 2003a. A study of applying genetic programming to reservoir trophic state evaluation using remote sensor data, International Journal of Remote Sensing, 24(11): 2265-2275.
5- Chen L. 2003b. A study of applying macro-evolutionary genetic programming to concrete strength estimation, Journal of Computing in Civil Engineering, 17(4): 290-294.
6- Chen L. 2003c. Real coded genetic algorithm optimization of long term reservoir operation, Journal of American Water Resources Association, 39(5): 1157-1165.
7- Fallah-Mehdipour E., Bozorg Haddad O. and Marino M.A. 2012. Real-time operation of reservoir system by genetic programming, Water Resources Management, 26(14): 4091-4103.
8- Fogel L.J. 1964. On the organization of intellect. Ph.D. Thesis, University of California Los Angeles, Los Angeles, CA, USA.
9- Fogel L.J., Owens A.J. and Walsh M.J. 1966. Artificial intelligence through simulated evolutions, John Wiley, Michigan, MI, USA.
10- Koza J.R. 1992. Genetic programming: On the programming of computers by means of natural selection, MIT Press, Cambridge, MA, USA.
11- Koza J.R. 1994. Genetic programming II: Automatic discovery of reusable programs, MIT Press, Cambridge, MA, USA.
12- LINDO. 2004. LINGO user’s manual, LINDO System INC, http://www.lindo.com/.
13- Orouji H., Bozorg Haddad O., Fallah-Mehdipour E. and Marino M.A. 2013. Flood routing in branched river by genetic programming, Proceedings of the Institution of Civil Engineers: Water Management, DOI: 10.1680/wama.12.00006.
14- Overman E. 2011. A MATLAB tutorial. Department of Mathematics, The Ohio State University, Columbus, OH, USA, 180 p.p.
15- Yeh W.W.G. 1985. Reservoir management and operations models: A state-of-the-art review, Water Resources Research, 21(12): 1797-1818.
CAPTCHA Image