تأثیر پوشش‌های درختچه‌ای بر برخی ویژگی‌های خاک در یک اقلیم نیمه‌خشک

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه مرتعداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران

چکیده

درختچه­ها از مهم‌ترین اجزای اکوسیستم­های مرتعی به شمار می­آیند. با این حال مطالعات اندکی در خصوص تأثیر نوع پوشش­های درختچه­ای بر ویژگی­های خاک اکوسیستم­های مرتعی انجام شده است. در پژوهش حاضر، اثر پوشش درختچه­ای لور (Carpinus orientalis Miller.)، سرخه­ولیک (Crataegus microphylla C. Koch.)، زرشک (Berberis integerrima Bunge.)، آلوچه وحشی (Prunus spinosa L.) و سیاه تنگرس (Rhamnus pallasii Fisch. and C. A. Mey) بر برخی ویژگی­های خاک در بخش کوهستانی کیاکلا شهرستان نوشهر مورد مطالعه قرار گرفته است. به­منظور انجام این پژوهش، تعداد 15 پایه از هر یک از گونه­های درختچه­ای اشاره شده انتخاب شد. در زیر تاج پوشش این گونه­ها، نمونه­های خاک از عمق صفر تا 10 سانتی­متری و در یک سطح 30 × 30 سانتی­متر برداشت و به آزمایشگاه انتقال داده شد. مطابق با یافته­های این پژوهش، بیشترین مقادیر ویژگی­های تخلخل، پایداری خاکدانه، محتوی رس، اسیدهای فولویک و هیومیک و سهم میکروبی در خاک زیر پوشش درختچه­ای لور مشاهده شد. در حالی‌که کم‌ترین مقادیر جرم مخصوص ظاهری، محتوی شن، شاخص­های نسبت رس و نسبت رس اصلاح شده، نسبت شن به سیلت و نسبت سیلت به رس به خاک تحت تاج­پوشش این گونه درختچه­ای اختصاص داشت. ویژگی­های ماده آلی، جرم مخصوص حقیقی و محتوی سیلت خاک تفاوت آماری معنی­داری در بین پوشش­های درختچه­ای مورد مطالعه نشان ندادند. نتایج این پژوهش مؤید آن است که وجود پوشش درختچه­ای لور می­تواند منجر به بهبود وضعیت ویژگی­های کیفیت خاک در مراتع کوهستانی شمال کشور گردد. در همین راستا پیشنهاد می­شود برای احیاء اراضی تخریب­یافته مرتعی در منطقه مورد مطالعه و همچنین مناطقی با شرایط اکولوژیکی مشابه، در کنار سایر گونه­های درختچه­ای بومی منطقه، توجه ویژه به استفاده از گونه لور برای حفاظت خاک گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Shrub Cover on Some Soil Properties in a Semi-arid Climate

نویسندگان [English]

  • Z. Sohrabzadeh
  • Y. Kooch
Department of Range Management, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
چکیده [English]

Introduction
  Shrub covers play a pivotal role in pasture ecosystems, exerting considerable influence on various biochemical processes that occur within the habitat and surface layers of the soil. Despite their significance, there is a scarcity of research exploring the impact of different types of shrubs covers on soil properties within pasture ecosystems. Consequently, this present study was undertaken to address this gap in knowledge and investigate the effects of shrub cover on soil characteristics specifically within a semi-arid climate, which is known for its delicate and vulnerable habitats. 
 
Materials and Methods
The implementation of this research involved the consideration of the mountainous region of Kiakola, Nowshahr city. The current investigation focused on assessing the impact of various shrubs, namely Carpinus orientalis Miller, Crataegus microphylla C. Koch, Berberis integerrima Bunge, Prunus spinosa L., and Rhamnus pallasii Fisch. and C. A. Mey, on specific soil properies within the mountainous area of Kiakla, Nowshahr city. To carry out this research, 15 sites were selected for each of the aforementioned shrub species. Soil samples were collected from under the canopy of these species, specifically at a depth of 0-10 cm and a surface area of 30 cm × 30 cm. A total of 75 soil samples were then taken to the laboratory for analysis. The samples were divided into two parts: one part underwent physical and chemical tests after air-drying and passing through a 2 mm sieve, while the other part was stored at 4 degrees Celsius for biological tests. The presence or absence of significant differences in soil properties related to the type of shrub cover under investigation was determined using a one-way analysis of variance test. Principal component analysis (PCA) was utilized to establish the relationship between different soil characteristics within the studied shrub covers.
 
Results and Discussion
According to the findings of this investigation, alterations in the shrub species present in the examined pasture habitat resulted in modifications to the majority of soil quality properties. Nevertheless, no statistically significant disparity was observed in the quantity of soil organic matter. However, it is worth noting that the quantity of organic matter in the subsoil of Carpinus species exceeded that of the other examined shrubs. Carpinus and Crataegus shrubs were associated with the lowest values of bulk density, while the shrubs under investigation had no significant impact on soil particle density. Furthermore, the subsoil of the Carpinus shrub cover exhibited the highest values of soil porosity. In the studied area, the most stable soil aggregates were observed beneath the Carpinus and Rhamnus shrubs. The subsoil of Rhamnus and Carpinus shrubs exhibited the highest and lowest quantities of sand, respectively. Similarly, the subsoil of Carpinus and Rhamnus displayed the highest and lowest quantities of clay, respectively. The soil under Rhamnus displayed the highest ratio of CR and MCR indices, whereas the subsoil of Carpinus exhibited the lowest values of these indices. Fulvic and humic acids demonstrated the greatest values beneath the Carpinus, Crataegus, Berberis, Prunus, and Rhamnus shrubs, respectively, following a comparable pattern. Additionally, the subsoil of Carpinus exhibited the greatest quantity of microbial ratio, while the soil under Rhamnus displayed the lowest quantity of this characteristic. The outcomes of the principal component analysis (PCA) revealed that the quantity of organic matter, clay content, fulvic and humic acids, porosity, and stability of soil aggregate in the soil beneath Carpinus played a significant role in enhancing the soil microbial ratio of this shrub in comparison to the other shrubs.
 
Conclusion
 The findings of this investigation validate the capability of Carpinus foliage to ensure the conservation of soil quality indicators on the hilly grasslands of northern Iran. Therefore, it is proposed that restoration efforts be conducted in the designated region and other areas with similar ecological conditions. Additionally, it is recommended that special attention be given to the implementation of Carpinus and other indigenous shrub species to protect soil integrity.
 

کلیدواژه‌ها [English]

  • Carpinus orientalis
  • Microbial ratio
  • Organic acids
  • Organic matter
  • Shrub land

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Allison, L.E. (1965). Organic carbon. Methods of soil analysis/Madison, Wisc, 1367-1376.
  2. Augusto, L., Ranger, J., Binkley, D., & Rothe, A. (2002). Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science59(3), 233-253. https://doi.org/10.1051/forest:2002020
  3. Beuschel, R., Piepho, H.P., Joergensen, R.G., & Wachendorf, C. (2020). Impact of willow-based grassland alley cropping in relation to its plant species diversity on soil ecology of former arable land. Applied Soil Ecology147, 103373. https://doi.org/10.1016/j.apsoil.2019.103373
  4. Blake, G.R., & Hartge, K.H. (1986). Particle density. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods5, 377-382. https://doi.org/10.2136/sssabookser5.1.2ed.c14
  5. Boudjabi, S., & Chenchouni, H. (2022). Soil fertility indicators and soil stoichiometry in semi-arid steppe rangelands. Catena210, 105910. https://doi.org/10.1016/j.catena.2021.105910
  6. Bouyoucos, G.J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal54(5), 464-465. https://doi.org/10.2134/agronj1962.00021962005400050028x
  7. Brookes, P.C., Landman, A., Pruden, G., & Jenkinson, D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry17(6), 837-842.
  8. Cambardella, C.A., Gajda, A.M., Doran, J.W., Wienhold, B.J., Kettler, T.A., & Lal, R. (2001). Estimation of particulate and total organic matter by weight loss-on-ignition. Assessment Methods for Soil Carbon, 349-359.
  9. Carpenter, D.R., & Chong, G.W. (2010). Patterns in the aggregate stability of Mancos Shale derived soils. Catena80(1), 65-73.
  10. Chen, Y., Wei, T., Sha, G., Zhu, Q., Liu, Z., Ren, K., & Yang, C. (2022). Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau, China. Applied Soil Ecology170, 104292. https:// doi.org/10.1016/j.apsoil.2021.104292
  11. Gee, G.W., & Orr, D. (2002). Particle-Size Analysis. 255-289. Methods of soil analysis. Part4.
  12. Guimarães, D.V., Gonzaga, M.I.S., da Silva, T.O., da Silva, T.L., da Silva Dias, N., & Matias, M.I.S. (2013). Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research126, 177-182. https://doi.org/10.1016/j.still.2012.07.010
  13. Jafari, M., & Sarmadian, F. (2003). Fundamentals of Soil Science and Soil Classification. University of Tehran Press. First Edition. (In Persian)
  14. Khatoony, N., & Kolahi, M. (2021). Investigation role and function of rangelands on water. Journal of Water and Sustainable Development8(2), 91-104. https://doi.org/10.22067/jwsd.v8i2.1004
  15. Kooch, Y., & Noghre, N. (2020). Nutrient cycling and soil-related processes under different land covers of semi-arid rangeland ecosystems in northern Iran. Catena193, 104621. https://doi.org/10.1016/j.catena.2020.104621
  16. Kooch, Y., Mehr, M.A., & Hosseini, S.M. (2020). The effect of forest degradation intensity on soil function indicators in northern Iran. Ecological Indicators114, 106324. https://doi.org/10.1016/j.ecolind.2020.106324
  17. Kooch, Y., Rostayee, F., & Hosseini, S.M. (2016). Effects of tree species on topsoil properties and nitrogen cycling in natural forest and tree plantations of northern Iran. Catena144, 65-73. https://doi.org/10.1016/j.catena.2016. 05.002
  18. Kotzé, E., Loke, P.F., Akhosi-Setaka, M.C., & Du Preez, C.C. (2016). Land use change affecting soil humic substances in three semi-arid agro-ecosystems in South Africa. Agriculture, Ecosystems & Environment216, 194-202. https://doi.org/10.1016/j.agee.2015.10.007
  19. Kumar, K.A.U.S.H.A.L., Tripathi, S.K., & Bhatia, K.S. (1995). Erodibility characteristics of Rendhar watershed soils of Bundelkhand. Indian Journal of Soil Conservation23(3), 200-204.
  20. Lai, Z., Zhang, Y., Liu, J., Wu, B., Qin, S., & Fa, K. (2016). Fine-root distribution, production, decomposition, and effect on soil organic carbon of three revegetation shrub species in northwest China. Forest Ecology and Management359, 381-388. https://doi.org/10.1016/j.foreco.2015.04.025
  21. Levula, J., Ilvesniemi, H., & Westman, C.J. (2003). Relation between soil properties and tree species composition in a Scots pine-Norway spruce stand in southern Finland. Silva Fennica37(2), 205-218.
  22. Li, Y., Zhou, W., Jing, M., Wang, S., Huang, Y., Geng, B., & Cao, Y. (2022). Changes in reconstructed soil physicochemical properties in an opencast mine dump in the Loess Plateau Area of China. International Journal of Environmental Research and Public Health19(2), 706. https://doi.org/10.3390/ijerph19020706
  23. Liu, D., Huang, Y., An, S., Sun, H., Bhople, P., & Chen, Z. (2018). Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena162, 345-353. https://doi.org/ 10.1016/j.catena.2017.10.028
  24. López, R., Gondar, D., Iglesias, A., Fiol, S., Antelo, J., & Arce, F. (2008). Acid properties of fulvic and humic acids isolated from two acid forest soils under different vegetation cover and soil depth. European Journal of Soil Science59(5), 892-899. https://doi.org/10.1111/j.1365-2389.2008.01048.x
  25. Mojtahedi, M.R., & Nik Nahad Qormakher, H. (2013). The effect of changing pasture land use on some physical and chemical properties of soil. First National Conference on Natural Resources Management, 16 pages. (In Persian)
  26. Moscatelli, M.C., Di Tizio, A., Marinari, S., & Grego, S. (2007). Microbial indicators related to soil carbon in Mediterranean land use systems. Soil and Tillage Research97(1), 51-59. https://doi.org/10.1016/j.still.2007.08.007
  27. Moscatelli, M.C., Marabottini, R., Massaccesi, L., & Marinari, S. (2022). Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area. Geoderma Regional29, e00500. https:// doi.org/10.1016/j.geodrs.2022.e00500
  28. Muhammad, S., Müller, T., & Joergensen, R.G. (2008). Relationships between soil biological and other soil properties in saline and alkaline arable soils from the Pakistani Punjab. Journal of Arid Environments72(4), 448-457. https://doi.org/10.1016/j.jaridenv.2007.06.016
  29. Neher, D.A., Wu, J., Barbercheck, M.E., & Anas, O. (2005). Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology30(1), 47-64. https://doi.org/10.1016/j.apsoil.2005.01.002
  30. Nelson, D.W., & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods5, 961-1010. https://doi.org/10.2136/sssabookser5.3.c34
  31. Olaniya, M., Bora, P.K., Das, S., & Chanu, P.H. (2020). Soil erodibility indices under different land uses in Ri-Bhoi district of Meghalaya (India). Scientific Reports10(1), 14986. https://doi.org/10.1038/s41598-020-72070-y
  32. Osman, K.T., & Osman, K.T. (2013). Physical properties of forest soils. Forest Soils: Properties and Management, 19-44.
  33. Parkinson, D., & Coleman, D.C. (1991). Microbial communities, activity and biomass. Agriculture, Ecosystems & Environment34(1-4), 3-33. https://doi.org/10.1016/0167-8809(91)90090-K
  34. Plaster, E.J. (1985). Soil science and management. Delmar Publishers Inc., Albany, p 124.
  35. Qu, L., Huang, Y., Ma, K., Zhang, Y., & Biere, A. (2016). Effects of plant cover on properties of rhizosphere and inter-plant soil in a semiarid valley, SW China. Soil Biology and Biochemistry94, 1-9. https://doi.org/10.1016/ j.soilbio.2015.11.004
  36. Sala, O.E., Yahdjian, L., Havstad, K., & Aguiar, M.R. (2017). Rangeland ecosystem services: Nature’s supply and humans’ demand. Rangeland systems: Processes, Management and Challenges, 467-489. https://doi.org/ 10.1007/978-3-319-46709-2
  37. Schwendenmann, L., Veldkamp, E., Brenes, T., O'brien, J.J., & Mackensen, J. (2003). Spatial and temporal variation in soil CO2 efflux in an old-growth Neotropical rain forest, La Selva, Costa Rica. Biogeochemistry64, 111-128. https://doi.org/10.1023/A:1024941614919
  38. Seyghalani, S., Ramezanpour, H., & Kahneh, E. (2015). Effect of Populus caspica, Alnus glutinosa and Taxodium distichum on some soil chemical properties in Forestlands of Astaneh Ashrafieh. Iranian Journal of Soil Research29(2), 233-241. (In Persian with English abstract). https://doi.org/10.22092/ijsr.2015.102217
  39. Shahpiri, A. (2022). Analysis of the variability of detritivores and decomposer organisms in relation to the stoichiometry of plant and soil quality characteristics. Master's thesis on rangeland, Tarbiat Modares University, 180 pages. (In Persian with English abstract)
  40. Sigurðsson, B.D., & Guðleifsson, B.E. (2013). Impact of afforestation on earthworm populations in Iceland.
  41. Sircely, J., Conant, R.T., & Boone, R.B. (2019). Simulating rangeland ecosystems with G-Range: model description and evaluation at global and site scales. Rangeland Ecology & Management72(5), 846-857. https://doi.org/ 10.1016/j.rama.2019.03.002
  42. Soltani Toolarood, A.A., Einazi Nai, M., Shahab, H., Ghavidel, A., & Ghasemi, S. (2019). Determination of the most important microbial indicators as soil health index in Cadmium and Lead contaminated soils. Journal of Environmental Science Studies4(1), 1142-1150. (In Persian with English abstract)
  43. Tan, K.H. (2005). Soil Sampling, Preparation, and Analysis (2nd ed.). CRC Press. https://doi.org/10.1201/ 9781482274769
  44. Vorobeichik, E.L. (1997). On the methods for measuring forest litter thickness to diagnose the technogenic disturbances of ecosystems. Russian Journal of Ecology28(4), 230-234.
  45. Wang, B., Liu, G.B., Xue, S., & Zhu, B. (2011). Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau. Environmental Earth Sciences62, 915-925. https://doi.org/10.1007/s12665-010-0577-4
  46. Weidlich, E.W., Flórido, F.G., Sorrini, T.B., & Brancalion, P.H. (2020). Controlling invasive plant species in ecological restoration: A global review. Journal of Applied Ecology57(9), 1806-1817. https://doi.org/10.1111/ 1365-2664.13656
  47. Wen, L., Lei, P., Xiang, W., Yan, W., & Liu, S. (2014). Soil microbial biomass carbon and nitrogen in pure and mixed stands of Pinus massoniana and Cinnamomum camphora differing in stand age. Forest Ecology and Management328, 150-158. https://doi.org/10.1016/j.foreco.2014.05.037
  48. Woloszczyk, P., Fiencke, C., Elsner, D.C., Cordsen, E., & Pfeiffer, E.M. (2020). Spatial and temporal patterns in soil organic carbon, microbial biomass and activity under different land-use types in a long-term soil-monitoring network. Pedobiologia80, 150642. https://doi.org/10.1016/j.pedobi.2020.150642
  49. Wulanningtyas, H.S., Gong, Y., Li, P., Sakagami, N., Nishiwaki, J., & Komatsuzaki, M. (2021). A cover crop and no-tillage system for enhancing soil health by increasing soil organic matter in soybean cultivation. Soil and Tillage Research205, 104749. https://doi.org/10.1016/j.still.2020.104749
  50. Yang,, Zhu, J., Zhang, M., Yan, Q., & Sun, O.J. (2010). Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. Journal of Plant Ecology3(3), 175-182. https://doi.org/10.1093/jpe/rtq022
  51. Yoder, R.E. (1936). Direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Journal of the American Society of Agronomy28(5).
  52. Zhang, Y., Xu, X., Li, Z., Liu, M., Xu, C., Zhang, R., & Luo, W. (2019). Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Science of the Total Environment650, 2657-2665. https://doi.org/10.1016/j.scitotenv.2018.09.372
CAPTCHA Image