بررسی اثر کشت گیاه سورگوم در تغییر برخی شاخص های زیستی خاک در سطوح مختلف روی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه تهران

2 گروه علوم و مهندسی ُ دانشکده مهندسی و فناوری کشاورزی - دانشگاه نهران

چکیده

روی از جمله عناصر ضروری برای رشد گیاه است که غلظت زیاد آن موجب آلودگی و ایجاد سمیت در گیاه می شود. در این پژوهش اثرات کشت گیاه سورگوم بر برخی شاخص های فعالیت میکروبی و رابطه آن با افزایش غلظت روی در دو خاک با خصوصیات فیزیکی و شیمیایی نسبتا مشابه اما متفاوت در غلظت فلزات سنگین مورد بررسی قرار گرفت. در هر دو خاک سه سطح روی mgkg-1250، 375و500 (بر اساس روی اولیه قابل استخراج با اسید نیتریک) اضافه شد. با استفاده از جعبه های پلاستیکی محتوی 8 کیلوگرم خاک محفظه های ریشه دان (Rhizobox) تهیه شد، که فضای داخل آن با استفاده از صفحات توری نایلونی به سه منطقه 1 S(منطقه ریزوسفری)، 2 S(مجاور به ریزوسفر) و 3 S(توده خاک) جداسازی گردید. نتایج نشان داد که در تمام سطوح روی و در هر دو نوع خاکBCF بزرگتر از 1 بوده است، سورگوم بر اساس این شاخص به عنوان گیاهی جهت بیش اندوزی روی محسوب می گردد. تنفس میکروبی و فعالیت دی هیدروژناز در خاک آلوده تر در تمامی مناطق جزءبندی شده مجاور ریشه کاهش یافت. در این رابطه اگرچه محیط ریشه (سوبسترا) و بازدارنده ها (فلزات سنگین) در تشکیل کمپلکس سوبسترا-آنزیم و بازدارنده-آنزیم رقابت می کنند، اما اثرگذاری ریشه در افزایش فعالیت میکروبی و آنزیمی در خاک 1 (غیرآلوده) بیشتر از خاک2 (آلوده) است. علت آن نیز احتمالا بهبود شرایط کشت گیاه سورگوم بر افزایش فعالیت های میکروبی آن در مجاورت ریشه حتی در شرایط تنش شدیدتر از نظر غلظت روی می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of Effects of Sorghum Cultivation on Some Soil Biological Indicators at Different Zinc Levels

نویسندگان [English]

  • S. Bagheri 1
  • hossein mirseyed hosseini 2
1 University of Tehran
2 soil science department, University of Tehran
چکیده [English]

Zinc is an essential element for plant growth which its high concentrations can cause pollution and toxicity in plant. In this study, the effects of sorghum cultivation on some indicators of microbial activity and its association with increased zinc concentrations in two soils with relatively similar physical and chemical properties, but different in concentration of heavy metals were investigated. In both soils zinc levels were added to obtain 250, 375 and 500 mg kg-1 (based on the initial nitric acid extractable) content. Using plastic boxes containing 8 kg of soil, growth boxes (Rhizobox) were prepared. The box interior was divided into three sections S1 (the rhizosphere), S2 (adjacent to the rhizosphere) and S3 (bulk soil) using nylon net plates. The results showed that at all levels of zinc in both soil types, BCF were bigger than units, so using this indicator, sorghum can be considered as a plant for accumulation of zinc. Microbial respiration and dehydrogenase activity was reduced in all sections adjacent to root in the polluted soil. It is generally understood that substrates and inhibitors (heavy metals) compete in the formation of substrate-enzyme and inhibitor-enzyme complexes, but the effects of sorghum cultivation in increasing biological and enzyme activity indexes in soil 1 (non-polluted) was higher than soil 2 (polluted), perhaps due to improvements in microbial activity in the vicinity of the roots, even in concentration higher than stress condition levels for zinc in soil.

کلیدواژه‌ها [English]

  • Sorghum
  • Zinc
  • Rhizosphere
  • Rhizobox
  • Biological Indicators
1- عین الهی پیر ف. 1391. بررسی میزان تجمع فلزات سنگینCd,Cu,Ni,Zn در رسوبات و بافت های درخت حرا Avicennia marina در خلیج گواتر، دریای عمان. نشریه اقیانوس شناسی 11: 73-82.
2- Akmal M. and Jianming X. 2008. Dehydrogenase, urease and phosphatase activities as affected by Pb contamination in the Soil. Soil & Environ, 27:139-142.
3- Alloway B.J. 2008. Zinc in Soils and Crop Nutrition. International Zinc Association. Brussels, Belgium.
4- Alef K. and Nannipieri P. 1995. Methods in soil microbiology and biochemistry. Academic press., London.
5- Badine N.N.Y., Chotte J.L., Pate E., Masse D. and Rouland C. 2001. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Appl Soil Ecol, 18:229–238.
6- Banks M.K., Lee E., and Schwab A.P. 1999. Evaluation of dissipation mechanisms for benzo[a]pyrene in the rhizosphere of tall fescue. Environ Qual J,3:294–298.
7- Bhargava A., Shukla S., Srivastava J., singh N. and Ohri D. 2008. Chenopodium: aprospective plant for phytoextraction. Acta Physiol Plant, 30:111–120.
8- Bouyoucos C.J. 1962. Hydrometer Method Improved for Making Particle-size Analysis of Soil. J. Agron, 54: 464-465.
9- Chakroun H.K., Souissi F., Bouchardon J.L., Souissi R., Moutto J., Faure O., Remon E., and Abdeljaoued S. 2010. Travsfer and accumulation of lead, Zinc, cadmiumand copper in plants growingin abandoned mining-district area. Afr J Environ Sci Technol, 4:651-659.
10- Chang A.C., Warneke J.E., Page A.L., and Lund L.J. 1984.Accumulationof heavy metals in sewage sludge- treated soils. Environ Qual J,13:87-91.
11- Chaperon S., and Sauve S .2007. Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biol Bioch, 39:2329–2338.
12- Cheng-li C.H., Min L., and Chang-yong H. 2005. Effect of combined pollution by heavy metals on soil enzymatic activies area polluted by tailings from Pb-Zn-Ag mine. J environ Sci, 17:637-640.
13- Ghosh M., and Singh S.P. 2005. A review on phytoremediation of heavy metals and utilization of it’s by product. Appl Ecol Environ Res. 3:1-18.
14- Hinsinger P., Gobran G.R., Gregory P.J., and Wenzel W.W. 2005. Rhizosphere geometry and heterogeneity arising from rootmediated physical and chemical processes. New Phytol. Review, 168:293-303.
15- Ho¨gberg P., Nordgren A., Buchmann N., Taylor A.F.S., Ekblad A., Hogberg M.N., Nyberg G., Ottosson Lofvenius M., and Read D.J. 2001. Large-scale forest girdling shows that currentphotosynthesis drives soil respiration. Nature, 411:789–792.
16- Hopkin S.P. 1989. Ecophysiology of Metals in Terrestrial Inverterbrates. Elsevier applied Sci.Barking. U.K.
17- Hylander L.D. 2002. Improvements of rhizoboxes used for studies of soil-root interactions. Commun. Soil Sci Plant Anal, 33:155-161.
18- Kim U.K., Jorgenson E., Coon H., Leppert M., Risch N., and Drayna D. 2003. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Sci, 299:1221–1225.
19- Ling N., Zhang W., Tan Sh., Huang Q., and Shen Q. 2012. Effect of the nursery application of bioorganic fertilizer on spatial distribution of Fusarium oxysporum f. sp. niveum and its antagonistic bacterium in the rhizosphere of watermelon. Appl Soil Ecolo, 59:13–19.
20- Loneragan J.F., and Webb M.J. 1993. Interactions between Zinc and Other Nutrients Affecting the Growth of Plants. Chap 9 in Robson, A.D. (ed.) Zinc in Soils and Plants , Kluwer Academic Publishers, Dordrech.
21- Ma L.Q., Komar K.M., Tu C., Zhang W., Cai Y., and Kenelly E.D.A. 2001. Fern that hyper accumulates arsenic. Nature, 409:579-582.
22- MacFarlane G.R., Koller C.E., and Blomberg S.P. 2007. Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies.Chemosphere, 69:1454-64.
23- Marchiol L., Fellet G., Perosa D., and Zerbi G. 2007. Removal of trace metals by Sorghum bicolor and Helianthus annuus in a sitepolluted by industrial wastes: a field experience. Plant Physiol Biochem, 45:379–387.
24- Mc Catcheon S.C., and Schnoor J.L. 2003. Phytoremediation, transformation and control of contaminants.
25- Mirshekali H., Hadi H., Amirnia R., and Khodaverdiloo H. 2012. Effect of zinc toxicity on plant productivity, chlorophyll and zn contents of Sorghum (sorghum bicolor) and common lambsquarter (chenopodium album). J Agric Res Rev, 2:247-254.
26- Moraghan J.T., and Kenneth G. 1999. Seed-Zinc Concentration and the Zinc-Efficiency Trait in Navy Bean. Soil Sci Soc Am J, 63:918–922.
27- Nelson D.W., and Sommers L.E. 1982. Total carbon, organic carbon, and organic matter.In A.L. Page (ed.) Methods of soil analysis, Part 2. 2nd ed. Chemical and microbiological properties. Agronomy monograph no.9. SSSA and ASA, Madison, WI. USA.
28- Norwood W.P., Borgmann U., Dixon D.G., and Wallace A. 2003. Effect of metal mixtures on aquatic biota: a review of observations and methods. Hum Ecol Risk Assess, 9:795–811.
29- O.Oseni T. 2009. Growth and Zinc Uptake of Sorghum and Cowpea in Response to Phosphorus and Zinc Fertilization.World J Agri Sci, 5:670-674.
30- Öhlinger R. 1996. Dehydrogenase activity with the substrate TTC. In: Schinner F, Öhlinger R, Kandeler E, Margasin R (eds) Methods in soil biology. Berlin:Springer.
31- Qu J., Ren G., Chen B., and Fan J.E.Y. 2011. Effects of Lead and Zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland. Environ Monit Ass, 182:597-606.
32- Rajapaksha R.M.C.P., Tobor-Kapłon M.A., and Baath M. 2004. Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol, 5:2966–2973.
33- Rhoades J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. In D.L. Sparks (ed.) Methods of soil analysis. Part 3. Chemical methods. SSSA. Book series no. 5. Madison. WI. USA.
34- Salazar S., Sanchez L., Alvarez J., Valverde A., Galindo P., Igual J., Peix A., and Santa-Regina I. 2011. Correlation among soil enzyme activities under different forest system management practices. Ecolog Engin, 37:1123-1131.
35- Sandaa R.A., Torsvik V., Enger Ø., Daae F.L., Castberg T., and Hahn D. 1999. Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol, 30:237–251.
36- Skujins J.J. Enzymes in soils [M]. 1967. In:Soil biochemistry (Mclaren A.D., Petersoin G.H., ed.). New York: Marcel Dekker.
37- Smolders E., Mcgrath S.P., Lombi E., Karman C.C., Bernhard R., Cools D., Brande K.V.D., Os B.V., and Walrave N. 2003. Comparison of toxicity of Zinc for soil microbial processes between laboratory-contaminated and polluted field soils. Environ Toxicol Chem, 22:2592–2598.
38- Summer M.E., and Miller W.P. 1996.Cation exchange capacity and exchange coefficients. In: Methods of soil analysis. Part 3. Chemical methods. (Ed. Dl. Sparks). Soil Sci. Soc. Am. Madison. WI.
39- Tabatabai M.A. 1994. Soil enzymes. In R.W. Weaver et al. (ed.) Methods of soil analysis. Part 2. Microbiological and biochemical properties. SSSA Book Ser. 5. SSSA, Madison, WI.
40- Thomas G.W. 1996. Soil pH and soil acidity. In D.L. Sparks (ed.) Methods of soil analysis. Part 3. Chemical methods. SSSA. Book series no. 5. Madison. WI. USA.
41- Waling I., Van vark W., Houba V.J.G., and Der lee J.J. 1989. Soil and plant analysis.A series of sillabi. Part 7. Plant analy proc. Wageningen Agricultural University.
42- Wang Y., Fang L., Lin L., Luan T., and Tam N.F. 2013. Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons.Chemosphere, 13:6365-6345.
43- Wei-Hong X.U., Huai L.I.U., Qi-Fu M.A., and Xiong Z.T. 2007. Root exudates, rhizosphere Zn fractions, and Zn accumulation of Ryegrass at different soil Zn levels. Pedosphere,17:389-396.
44- Yang X.E., Li T.Q., Yang J.C., He Z.L., Lu L.L., and Meng F.H. 2006. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta, 224:185–195.
45- Yoon J., Cao X., Zhau Q., and Lena Q.M. 2006. Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ, 368:456-464.
CAPTCHA Image