بررسی رهاسازی پتاسیم غیرتبادلی از برخی کانی‌های پتاسیم‌دار توسط عصاره‌گیرهای مختلف

نوع مقاله : مقالات پژوهشی

نویسندگان

1 ؟

2 دانشگاه ارومیه

چکیده

به منظور مقایسه سینتیک رهاسازی پتاسیم از کانی‌های پتاسیم‌دار و نیز انتخاب بهترین معادله سینتیکی توصیف کننده روند رهاسازی پتاسیم توسط عصاره‌گیرهای آلی و معدنی، آزمایشی در قالب طرح کاملا تصادفی با آرایش فاکتوریل در 3 تکرار اجرا گردید. فاکتورهای آزمایش شامل 3 نوع عصاره-گیر (اسید اگزالیک 01/0 مولار، کلرید کلسیم 01/0 مولار، شاهد (آب مقطر))، 3 کانی پتاسیم‌دار (فلدسپار، ایلیت و فلوگوپیت) و 10 زمان (1، 2، 4، 8، 12، 16، 24، 32، 48 و 64 ساعت) بودند. مقدار پتاسیم آزاد شده با استفاده از دستگاه فلیم‌فتومتر طی زمان‌های مختلف در شرایط آزمایشگاهی اندازه‌گیری شد و داده‌ها به معادلات سینتیکی مرتبه صفر، مرتبه اول، مرتبه دوم، تابع توانی، پخشیدگی پارابولیک و الوویچ برازش داده شد. نتایج نشان دهنده‌ی اثر معنی‌دار نوع عصاره‌گیر بر سینتیک رهاسازی پتاسیم بود، بطوریکه میزان پتاسیم آزاد شده در نمونه‌های عصاره‌گیری شده با اسید اگزالیک در مقایسه با نمونه‌های عصاره‌گیری شده با کلرید کلسیم و شاهد (آب مقطر) به ترتیب 48/1 و 35/2 برابر بیشتر بود. کانی‌های مختلف نیز مقادیر متفاوتی از پتاسیم را آزاد نمودند. رهاسازی پتاسیم از فلوگوپیت نسبت به فلدسپار و ایلیت به ترتیب 99/1 و 95/2 برابر بیشتر بود. بیشترین غلظت پتاسیم نیز (440 میلی‌گرم بر کیلوگرم) در تیمار عصاره‌گیری شده با اسید اگزالیک و در حضور کانی فلوگوپیت مشاهده گردید. بطوری‌که مقدار پتاسیم در این تیمار 15/3 برابر نسبت به شاهد افزایش یافت. برازش معادلات سینتیکی نشان داد که معادلات تابع توانی و پخشیدگی پارابولیک با بیشترین ضریب تبیین (R2) و کمترین خطای استاندارد (SE)، بهترین مدل برای برازش داده‌ها بودند این در حالیست که مدل مرتبه دوم قادر به توجیه رهاسازی پتاسیم نبود. چنین استنباط می‌گردد که سینتیک رهاسازی پتاسیم توسط عوامل مختلفی از جمله نوع کانی و نوع عصاره‌گیر تحت تأثیر قرار می‌گیرد و عصاره‌گیر آلی توانایی بالاتری در استخراج پتاسیم غیرتبادلی از ساختار کانی‌ها دارد. همچنین تطبیق نتایج این تحقیق با معادلات مرتبه اول، پخشیدگی پارابولیک و تابع توانی حاکی از آن است که رهاسازی پتاسیم غیرتبادلی از کانی‌ها می‌تواند متأثر از فرآیند پخشیدگی باشد و بعبارت دیگر پخشیدگی پتاسیم به خارج از توده کانی، کنترل کننده سرعت آزاد شدن پتاسیم می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Non-Exchangeable Potassium Release from K-Bearing Minerals by Different Extractants

نویسندگان [English]

  • sanaz ashrafi saeidlou
  • Mirhasan Rasouli-Sadaghiani 1
  • Abbas Samadi 2
  • mohsen barin 2
  • ebrahim sepehr 2
2 Urmia University
چکیده [English]

Introduction: Potassium is one of essential nutrients for plants and its importance in agriculture is well known. Non-exchangeable potassium that is mainly placed with in layers of K-bearing minerals, such as K-feldspar and mica, is considered as an important source of potassium for plant growth in most soils. Regarding that low molecular weight acids (LMW) play an important role in improving the bioavailability of soil nutrients such as non-exchangeable K (NEK), and the release rate of NEK plays a significant role in supplying necessary K for plants, the purpose of this study was comparison of potassium release kinetic from K-bearing including feldspar, illite as well as phlogopite minerals and choose the best kinetic equation describing potassium release process, influenced by organic as well as mineral extractants.
Material and Methods: The experiment carried out in a completely randomized design with three replications. Experiment factors were including extractant type (0.01 mol l-1 oxalic acid, 0.01 mol l-1 calcium chloride, control (deionized water)), potassium mineral type (feldspar, illite and phlogopite) and incubation time (1, 2, 4, 8, 12, 16, 24, 32, 48, and 64 hours). Elemental composition of minerals identified by Fluorescence spectroscopy device (S4 Pioneer). Used minerals in the experiment including feldspar, phlogopite and illite were ground and filtered through a 230 mesh sieve. In order to remove exchangeable K, samples were saturated by calcium chloride solution (with a ratio of 2:1), after washing with HCl, samples were dried at 105 °C for 48 hours. 100 mg of washed minerals, was weighed carefully and transferred to centrifuge tubes. Then 20 ml of each of extractants (oxalic acid and calcium chloride 0.01M) was added to the tubes. After 15 minutes shaking, tubes containing a mixture of minerals-extractants was carried out in a controlled incubation chamber for periods of 1, 2, 4, 8, 12, 16, 24, 32, 48 and 64 hours at 25 °C. After each period, samples were centrifuged at 3000 rpm for 10 minutes and filtered using Whatman paper (No. 41). pH and potassium concentration of samples were measured by pH meter and flame photometer, respectively. Data related to potassium release was fitted by zero order, first order, second order, power function, parabolic diffusion and ellovich equations.
Results and Discussion: Results showed that the effect of extractant type was significant on kinetic of potassium release, so that potassium release amount in samples extracted with oxalic acid was 1.48 and 2.35 times higher than samples extracted with calcium chloride and control (deionized water), respectively. Also, different minerals released various amounts of potassium. K release from phlogopite was 1.99 and 2.95 times higher than feldspar and illite, respectively. The maximum potassium concentration (440 mg kg-1) was seen in phlogopite which was extracted with oxalic acid. So that, amount of potassium in this treatment was 3.15 times higher than control one. Furthermore, the effect of extraction time on K release was significant. So that, at the beginning of incubation period the release of potassium by different extractants was more, but its amount decreased over time and finally continued with a constant speed. Kinetic equation fitting showed that zero order, first order, power function, parabolic diffusion and ellovich equations are able to describe potassium release but second order model cannot justify it. Among these five equation, the power function and parabolic diffusion equations with the maximum coefficient of determination (R2) and the least standard error of estimate (SE), could reasonably describe the K release kinetics, so they are introduced as the best models for data fitting. The slope (b) and interception (a) of ellovich equation indicate interlayer and initial K release, respectively. Oxalic acid and phlogopite had the most amount of interception, it means that the impact of oxalic acid on initial and interlayer release rate of K in phlogopite, is more effective than calcium chloride.
Conclusions: It is concluded that different factors like mineral and extractant type influence kinetic of potassium release and organic extractant have more ability in extracting non-exchangeable potassium from minerals structure. Also, the adjustment of the results of this study with first order, parabolic diffusion and power function equations suggest that nonexchangeable potassium release from minerals can be affected by diffusion process from the surface of the study minerals, indicating that NEK release rate is controlled by K diffusion out of the mineral interlayer.

کلیدواژه‌ها [English]

  • Kinetic equations
  • Mineral salt
  • Organic Acid
  • Phlogopite
  • Potassium release
1- Abdi S., Ghasemi-Fasaei R., Karimian N., and Feizian M. 2015. Availability and release kinetics of nonexchangeable potassium in some calcareous soils of Fars province, Journal of Water and Soil, 28: 766-777. (In Persian)
2- Al-Zubaidi A., Yanni S., and Bashour I. 2008. Potassium status in some Lebanese soils, Lebanese Science journal, 9:81-97.
3- Bahreini Touhan M., Dordipour E., and Khormali F. 2009. The comparison of CaCl2 and organic acid ability in kinetics of non-exchangeable potassium release in dominant soils series in Golestan province, Journal of Water and Soil Conservation, 16 (3):59-81. (In Persian)
4- Bahreini Touhan M., Dordipour E., and Movahedi Naeini A.R. 2010. Kinetic of non-exchangeable potassium release using citric acid and CaCl2 in dominant Farmlands soil series in Golestan province, Journal of Sciences and Technology of Agriculture and Natural Resources, 14 (53): 113- 126. (In Persian)
5- Barman A. K., Varadachari C., and Ghosh K. 1991. Weathering of silicate minerals by organic acids. I. Nature of cation solubilization, Geoderma, 53: 45-63.
6- Bolt M., Sumner E., and Kamphorst A. 1963. A study of the equilibria between three categories of potassium in an illitic soil, Soil Science Society of America Proceedings Journal, 27:294-299.
7- Cox A.E., Joern B.C., Brouder S.M., and Gao D. 1999. Plant- available potassium assessment with a modified sodium tetra phenyl boron method, Soil Science Society of America Proceedings Journal, 63: 902-911.
8- Darunsontaya T., Suddhiprakarn A., Kheoruenromne I., and Gilkes R.J. 2010. The kinetics of potassium release to sodium tetraphenylboron solution from the clay fraction of highly weathered soils, Applied Clay Science Journal, 50:376-385.
9- Dhillon S.K., and Dhillon K.S. 1990. Kinetics of release of non-exchangeable potassium by cation-saturated resins from Red (Alfisols), Black (Vertisols) and Alluvial (Inceptisols) soils of India, Geoderma, 47: 3-4. 283-300.
10- Drever J.I., and Stillings L.L. 1997. The role of organic acids in mineral weathering. Colloids and Surfaces, A: Physicochemical and Engineering Aspects Journal, 120: 167-181.
11- Farshadirad A., Dordipour E., and Khormali, F. 2013. Kinetic of non-exchangeable potassium release with CaCl2 from soils and its components, Journal of Soil Management and Sustainable Production, 3 (1): 113-129. (In Persian)
12- Fox T.R., McFee W.W., and Kelly J. M. 1995. The influence of low molecular weight organic acids on properties and processes in forest soils. P. 43-62. In Carbon forms and functions in forest soils. Soil Science Society of America Incorporated, Madison, WI.
13- Goulding K.W.T. 1984. The availability of potassium in soils to crops as measured by its release to calcium saturated cation exchange resin, Agricultural Science Journal, 103: 265-275.
14- Hatami H., Karimi A., Fotovat A., and Khademi H. 2013. Release of soluble, exchangeable and non-exchangeable forms of potassium in selected silicate k-bearing minerals as influenced by oxalic acid, Journal of Sciences and Technology of Agriculture and Natural Resources, 18 (69): 23-34. (In Persian)
15- Hosseinpur A.R. 2004. Application of kinetic models in describing non-exchangeable potassium release in some soils of Hamadan, Journal of Sciences and Technology of Agriculture and Natural Resources, 8 (3): 85-94. (In Persian)
16- Hue N.V., Craddock G.R., and Adams F. 1986. Effect of organic acids on aluminum toxicity in subsoils, Soil Science Society of America Journal, 50: 28-34.
17- Jalali M. 2005. Release kinetics of non-exchangeable potassium in calcareous soils, Communications in Soil Science and Plant Analysis Journal, 36: 1903-1917.
18- Jalali M. 2006. Kinetics of non-exchangeable potassium release and availability in some calcareous soils of western Iran, Geoderma, 135: 63-71.
19- Jardin P.M., and Sparks D.L. 1984. Potassium-calcium exchange in a multireactive soil system: 1. Kinetics, Soil Science Society American Journal, 47:39-45.
20- Jones D.L. 1998. Organic acids in the rhizosphere-a critical review, Plant and Soil Journal, 205: 25-44.
21- Kononova M.M., Aleksandrova I.V. and Titova N.A. 1964. Decomposition of silicates by organic substances in the soil, Soviet Soil Science Journal, 63: 1005-1014.
22- Martin H.W., and Sparks D.L. 1983. Kinetics of non-exchangeable potassium release from two coastal plain soils, Soil Science Society of America Journal, 47: 883-887.
23- Mengel K., and Dou H. 1998. Release of potassium from the silt and sand fraction of loess-derived soils, Soil Science Journal, 163: 805-813.
24- Mengel K., and Kirkby E.A. 2001. Principles of Plant Nutrition. 5th ed., Illustrated. Springer Pub. USA.
25- Mousavi A., Khiamim F., Khademi H., and Shariatmadari H. 2014. The kinetics of potassium release from K-feldspar, compared with muscovite under the influence of different extractants, Journal of Sciences and Technology of Agriculture and Natural Resources, 67: 229-240. (In Persian)
26- Nilawonk W., Attanandana T., Phonphoem A., Yost R., and Shuai X. 2008. Potassium release in representative maize-producing soils of Thailand, Soil Science Society of America Journal, 72:791-797.
27- Norouzi S., and Khademi H. 2008. Potassium release from muscovite and phlogopite as influenced by selected organic acids, Journal of Water and Soil, 23 (1): 263-273. (In Persian)
28- Norouzi S., Khademi H., and Shirvani M. 2012. The kinetics of K release from muscovite and phlogopite with organic acids, Journal of Soil and Water Research, 42: 163-173. (In Persian)
29- Ogaard A.F., and Krogstad T. 2005. Release of interlayer potassium in Norwegian grassland soils, Plant Nutrition and Soil Science Journal, 168:80-88.
30- Pohlman A.A., and McColl J. 1986. Kinetics of metal dissolution from forest soils by soluble organic Acids, Environmental Quality Journal, 15 (1): 86-92.
31- Rich C.I. 1968. Mineralogy of soil potassium. P. 79-96. In the Role of Potassium in Agriculture. American Society of Agronomy: Madison, Wisconsin.
32- Russel E.W. 1961. Soil Conditions and Plant Growth. Longman, London.
33- Sharpley A.N. 1990. Reaction of fertilizer potassium in soils of different mineralogy, Soil Science Journal, 149:44–51.
34- Shu-Xin T.U., Zhi-Fen G.U.O., and Jin- He S.U.N. 2007. Effect of Oxalic Acid on potassium release from typical Chinese soils and minerals, Pedosphere Journal, 17 (4): 457-466.
35- Song S. K., and Huang P. M. 1988. Dynamics of potassium release from potassium-bearing minerals as influenced by oxalic and citric acids, Soil Science Society of America Journal, 52: 383-390.
36- Srinivasarao C., Rupa T. R., Subba Rao A., Ramesh G., and Bansal S. K. 2006. Release kinetics of nonexchangeable potassium by different extractants from soils of varying mineralogy and depth, Communications in Soil Science and Plant Analysis Journal, 37 (3): 473-491.
37- Sparks D. L., and Huang P. M. 1985. Physical chemistry of soil potassium. P. 201-276. In physical chemistry of soil potassium. Potassium in agriculture.
38- Sparks D. L., and Carski T. H. 1985. Kinetics of potassium exchange in heterogeneous system, Applied Clay Science Journal, 1: 89-101.
39- Sparks D. L. 1987. Potassium dynamics in soils, Advances in Soil Science, 6:1-63.
40- Sparks D. L. 1989. Kinetics of Soil Chemical Processes. Academic Press, Sandiego, CA.
41- Tu S. X., Guo Z. F., and Sun J. H. 2007. Effect of oxalic acid on potassium release from typical Chinese soils and minerals, Pedosphere Journal, 17: 457-466.
42- Keshavarz-Zarjani J., Aliasgarzadeh N., Oustan S.H., and Emadi M. 2014. Release of potassium and iron from biotite and phosphorous from tricalcium phosphate by seven strains of bacteria in vitro, Journal of Soil and Water Science, 27: 556-563.
CAPTCHA Image