تخصیص بهینه مخازن ذخیره سطحی با استفاده از روش سلسله مراتب فازی (مطالعه موردی: سد مخزنی شهرچای ارومیه)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد مهندسی منابع آب گروه مهندسی آب، دانشگاه ارومیه

2 استاد گروه مهندسی آب، دانشگاه ارومیه

چکیده

اولویت‌بندی تخصیص بهینه آب مخازن ذخیره جریان سطحی برای مصارف مختلف (شرب، کشاورزی، صنعت، محیط‎زیست و ...) در مناطق خشک و نیمه­خشک مانند ایران به دلیل دامنه تغییرات و عدم قطعیت بالای جریان‏های ورودی به مخزن و وقوع خشکسالی‏های متناوب از اهمیت بالایی برخوردار می­باشد. بدین منظور روش سلسله مراتب فازی (FAHP) به‌عنوان یک روش فرمول‌بندی مناسب در اولویت‌بندی تخصیص آب در سیستم منابع آبی پیشنهاد و استفاده می‏شود. لذا در این مطالعه اولویت‌بندی تخصیص آب برای مصارف مختلف سد مخزنی شهرچای واقع در بالادست کلان‌شهر ارومیه، در یک مطالعه میدانی و با استفاده از روش سلسله مراتبی فازی انجام پذیرفته است. این مطالعه میدانی بر اساس پرسش‌نامه از متخصصان و صاحب‌نظران صنعت آب منطقه بوده و مدل تصمیم‏گیری بر اساس داده‏های میدانی در یک فرآیند سلسله مراتبی فازی به ازای عوامل مؤثر کمی و کیفی توسعه‌یافته است. در فرایند مذکور، سه معیار اصلی اقتصادی، اجتماعی و زیست‎محیطی و چهار زیرمعیار درآمد، سطح زیر کشت، اشتغال­زایی و جمعیت برای شش گزینه از آب‏بران کشاورزی، شرب، نیاز زیست‎محیطی دریاچه ارومیه، تغذیه آب زیرزمینی، صنعت و تفریحی در نظر گرفته شده است. نتایج نشان داد که معیار اقتصادی با وزن 47/0 نسبت به دو معیار اصلی دیگر بیشترین اهمیت را دارد. افزون بر آن تخصیص آب به بخش شرب شهری با وزن 33/0 در اولویت اول، کشاورزی، دریاچه ارومیه، صنعت، آب زیرزمینی و تفریحی به ترتیب در اولویت­های بعدی قرار گرفتند. نتایج مذکور نشان از وابستگی شدید اقتصاد منطقه به توسعه صنعت کشاورزی و تولیدات آن بوده و تأمین آب شرب و کشاورزی و همچنین دریاچه ارومیه به ترتیب جهت تأمین آسایش، نیاز اصلی فعالیت‏های اقتصادی و حفظ اکوسیستم منطقه دارای اولویت اصلی در برنامه‌ریزی و مدیریت سد شهرچای ارومیه هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal Allocation of Surface Storage Tanks Using Fuzzy Hierarchy Method (Case Study: Shahrchay Storage Dam in Urmia)

نویسندگان [English]

  • E. Rezaei 1
  • M. Montaseri 2
  • H. Rezaei 2
1 M.Sc. in Water Resources Engineering Department of Water Engineering, Urmia University, Urmia, Iran
2 Professor, Department of Water Engineering, Urmia University, Urmia, Iran
چکیده [English]

Introduction: Prioritization of optimal water allocation of surface flow storage dams for different applications (drinking, agriculture, industry, environment, etc.) in arid and semi-arid regions such as Iran due to the range of changes, high flow uncertainty Reservoir inlets, and the occurrence of intermittent droughts are of great importance. For this purpose, the Fuzzy Hierarchy Process (FAHP) is proposed and used as a suitable formulation method in prioritizing water allocation in the water resources system. Therefore, in this study, prioritization of water allocation for different purposes of Shahrchai reservoir dam located upstream of Urmia metropolis has been done in a field study using fuzzy hierarchical method.
Materials and Methods: A fuzzy hierarchical process based on quantitative and qualitative effective factors has been developed. In the first stage, the problem structure was designed by determining the priority of water allocation of users, criteria, sub-criteria, and other factors. Then the decision-making hierarchy based on the problem structure (purpose, criteria, sub-criteria, factors, and options in the first to fifth levels, respectively) was defined. In the mentioned prioritization structure, the goal was determined at the first level, ie the optimal or appropriate allocation of Shahrchay reservoir dam water for different operators, and at the second level, three economic, social and environmental criteria were considered as the main criteria. At the third level, " cultivation area and gross income" and "employment and population" were considered as sub-criteria of two economic and social criteria, respectively. The main beneficiaries, namely agriculture, urban drinking, recreation and tourism, industry, environmental needs of Lake Urmia and groundwater fourth level (options) have formed the problem structure. At the next step, based on the field data or questionnaires, criteria, sub-criteria, and factors were compared in pairs using the proposed linguistic and fuzzy comparisons, and the priority of water consumption over each criterion or sub-criterion or factor were compared based on fuzzy triangular numbers. The weights were determined and ranked each using the Chang development method. At the third stage of the final ranking, the priority of water allocation was determined based on the final weight of criteria or priorities at the previous stage and the superior option was determined. Finally, a sensitivity analysis of the weight change of the criteria and the decision-making process of the problem has been performed.
Results and Discussion: A decision model based on a fuzzy approach is presented to rank the different options using Shahrchay dam water. For this purpose, firstly, using the opinions of experts and researchers, the results of a questionnaire, criteria and sub-criteria and important options in allocating water to Shahrchai Dam were determined. Secondly, using Chang's development analysis, different options were evaluated based on the mentioned criteria, sub-criteria, and factors. From a scientific point of view, because the questionnaires were presented to experts, the economic criterion is a high priority, so it is possible to attach great importance to the general conclusion about the criteria in economic attitudes and related issues. In addition, the allocation of water to the urban drinking sector with a weight of 0.33 was as the top priority, agriculture, Lake Urmia, industry, groundwater, and recreation were in the next priorities, respectively. Therefore, economic criteria and drinking water supply were recognized as the main objectives of planning and managing water resources in the metropolis of Urmia. The drinking sector is a vital factor for the survival of a community and because the drinking water of Urmia city is supplied through Shahrchai dam, so the allocation of water to this sector should be considered as the top priority. The agricultural sector was also given the second priority with less importance. The supply of water to this sector has a significant direct effect on the economy of the agricultural sector and indirectly on the entire economy of the region, which indicates the importance of the agricultural sector in the economy, living conditions of the region and the allocation of water to this sector. Comparing agricultural and industrial activities in Shahrchai catchment area, the most activity in the region is agriculture and industry is in a lower priority, which is also shown by the hierarchical results. Since Shahrchai River is one of the suppliers of water to Lake Urmia, the allocation of water to this section improves the condition of the lake and, consequently, it improves the environmental, economic, and social conditions of the region. The results also indicate the importance of Lake Urmia in relation to industry and its higher status indicates the attention of officials to the drying crisis of the Lake Urmia.

کلیدواژه‌ها [English]

  • FAHP
  • Fuzzy
  • Shahrchay Dam
  • Water allocation
  • Abbassinia M., Kalatpour O., Motamedzade M., Soltanian A., and Mohammadfam I. 2020. A fuzzy analytic hierarchy process-TOPSIS framework for prioritizing emergency in a petrochemical industry. Archives of Trauma Research 9(1): 35-40.
  • Abdul Rahman N.S.F., Ismail A., Othman M.K., Mohd Roslin R.A., and Lun Y.H.V. 2018. Decision making technique for analysing performance of Malaysian secondary ports. International Journal of Shipping and Transport Logistics 10(4): 468–496.
  • Amini Shadbad SA. The zoning of flood in the river using the hydraulic model. Master's thesis, University of Urmia.2008. (In Persian with English abstract)
  • Ayhan M.B. 2013. A fuzzy AHP Approach for supplier selection problem. International Journal of Managing Value and Supply Chains 4(3): 11–23.
  • Azarnivand A., Hashemi-Madani FS., and Banihabib ME. 2015. Extended fuzzy analytic hierarchy process approach in water and environmental management. Environment Earth Science 73: 13–26.
  • Bahmanpouri S., and Soltani GH. 2019. Application of fuzzy hierarchical analysis method in integrated water resources management Neyriz city.Journal of Agricultural Economics Research 10(4): 105-124. (In Persian with English abstract)
  • Chang D.Y. 1992. Extent Analysis and Synthetic Decision, Optimization Techniques and Applications, World Scientific, Singapore, 1-352.
  • Chuntian C. 1999. Fuzzy optimal model for the flood control system of the upper and middle reaches of the Yangtze River. Journal Hydrological Sciences 44(4): 573–582.
  • Fu G. 2006. A fuzzy optimization method for multicriteria decision making: an application to reservoir flood control operation. Journal Expert Systems with Applications 34(1): 145-149.
  • Ertugrul I., and Karakasoglu N. 2009. Performance evaluation of Turkish cement firms with fuzzy an alytic hierarchy process and TOPSIS methods. Expert Systems with Applications 36: 702–715.
  • Ghasemi A., and Danesh Sh. 2012. Fuzzy hierarchical analysis method for determining the optimal choice desalination of brackish water. Journal of Water and Soil 26(4): 999–1009. (In Persian with English abstract)
  • Gogus O., Boucher T. Strong transitivity, rationality and weak monotonicity in fuzzy pairwise comparisons. Fuzzy Sets and Systems 94(1): 133–144.
  • Karamooz M. 2005. Planning and utilization and allocation of water quality and quantity management with an emphasis on conflict resolution. Applied Research Projects, Water Resources Management, Technical Assistance and Research, 210. (In Persian)
  • Khashei-siuki A., Ghahraman B., and Kouchakzadeh, M. 2011. Evaluation of potential water harvesting aquifer using fuzzy AHP. J. of Water Research, 9 (5): 171-180.
  • Khashei-Siuki A., Keshavarz A., and Sharifan H. 2020. Comparison of AHP and FAHP methods in determining suitable areas for drinking water harvesting in Birjand aquifer Iran. Groundwater for Sustainable Development, 10.
  • Husseini Farazmand M. 2000. Mathematical Modeling utilization of water resources in Karkheh. Master thesis, School of Management, University of Tarbiat Modarres.
  • Laarhoven P.J.M., and Pedrycz W. 1983. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems 11: 229–241.
  • López-Moreno J.I., Begueria S., and Garcia-Ruiz J.M. 2002. Influence of the Yesa Reservoir on floods of the Aragon River Central Spanish Pyrenees. Journal Hydrology and Earth System Sciences 6(4): 753-762.
  • Lu L., Zhi-Hua Shi., Wei Y., Dun Z., Sai Leung N., G., Chong-Fa, C., and A-Lin L. 2009. A fuzzy analytic hierarchy process (FAHP) approach to eco-environmental vulnerability assessment for the danjiangkou reservoir area. China, Ecological Odelling 220: 3439-3447.
  • Mei X., Rosso R., Huang GL., and Nie GS. 1989. Application of analytical hierarchy process to water resources policy and management in Beijing. China. Proceedings of the Baltimore Symptoms 73-85.
  • Nader H., Sabouhi M., and Mohammad A. 2013. Optimal allocation of water from the incorporation of multi-purpose dam of Mahabad using fuzzy hierarchical analysis and planning. Journal of Soil and Water 22(4): 1-3. (In Persian with English abstract)
  • Omidi1 F., and Homaee M. 2016. Using different numerical schemes for assessing water productivity. 2ndWorld Irrigation Forum (WIF2).
  • Othman M., Shaiful Fitri N., Rahman A., Ismail A., and Saharuddin A. 2019. Factors contributing to the imbalances of cargo flows in Malaysia large-scale minor ports using a fuzzy analytical hierarchy process(FAHP) approach. The Asian Journal of Shipping and Logistics 36(3): 113-126.
  • Rohollahi A.R. 2011. Estimate the unconfined aquifer hydrodynamic optimal detetion method using genetic algorithm. M.Sc. hesis, Department of Water Engineering. Faculty of Agriculture, University of Birjand, 185. (In Persian with English abstract)
  • Sasikumar K., and Mujumdar P.P. 1998. Fuzzy optimization model for water quality management of a river Journal Water Resources Planning and Management 124(2): 79-80.
  • Sepand S., Chitsazan M., Ragzan K., and Mirzai Y. 2005. Use of remote sensing and GIS to determine potential water Lale plain. Geomatics Conference in Tehran, Tehran University, Tehran. (In Persian) De Bruijn KM. 2005. Resilience and flood risk management; A systems approach aplied to lowland rivers, 216 pp
  • Shaher H., and Daniela F. 2019. Comparison of several decision making techniques. International Journal of Information Technology & Decision Making 18(05): 1551-1578.
  • Shahraki A., Shahraki J., and Hashemi Monfared A. 2016. Investigating the management approaches of water resources exploitation in the region (FAHP) 9(21): 73-98. (In Persian with English abstract)
  • Talebi E. 2013. Prioritization of Gheshlagh Dam Water Allocation Using Analysis Fuzzy Hierarchy (FAHP). Master Thesis in Civil Engineering majoring University, Maragheh Branch. (In Persian with English abstract)
  • Zadeh L.A. 1965. Fuzzy sets. Information and Control 8(3): 199–249.
  • Zebardast A.2001. Application of analytical hierarchy process (AHP) in urban and regional planning program. Fine Arts Journal 10: 13-21.
CAPTCHA Image