بکارگیری الگوریتم ویتربی در پیش‌بینی وقوع بارندگی و شبیه‌سازی تداوم‌های خشک و تر – مقایسه با روش‌های متداول

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه تهران

چکیده

امروزه مدل های آماری بسیاری برای شبیه سازی سری زمانی گسسته وقوع و عدم وقوع بارش براساس داده های تاریخی وجود دارد که تاکید آن ها بیشتر بر ساخت آماره های اقلیمی است. با این وجود، دقت مدل های شبیه ساز مذکور باید از نقطه نظر لحظه ای یا کوتاه مدت نیز بهبود یابد. در تحقیق حاضر فرض شده است که ساختار وقوع بارش از مدل مارکف پنهان با یک لایه پنهان (سری گسسته وقوع و عدم وقوع) و یک لایه قابل-رویت تبعیت می کند، که به طور موردی در ایستگاه سینوپتیک خرم آباد (دوره آماری 2005-1961) مورد بررسی قرار گرفت. از الگوریتم ویتربی برای حل مساله رمزگشایی سری زمانی توالی حالات تر و خشک استفاده شد. کارکرد پنج متغیر هواشناسی (فشارهوا در ایستگاه، فشار بخار آب، دامنه شبانه روزی دمای هوا، رطوبت نسبی و دمای نقطه شبنم) به عنوان توالی قابل رویت، براساس معیارهای دقت پیش بینی با هدف انتخاب بهترین متغیر در فرآیند رمزگشایی مورد ارزیابی قرار گرفته است. نتایج نشان داد که متغیر دامنه شبانه روزی دمای هوا به عنوان مناسب ترین توالی قابل-رویت برای رمزگشایی سری گسسته خشک و تر ارزیابی می‌باشد که می تواند به دلیل وجود ارتباط فیزیکی قوی بین آن ها باشد. همچنین خروجی الگوریتم ویتربی از دو نقطه نظر (آماره های اقلیمی و دقت پیش بینی) با خروجی مولدهای هواشناسی ClimGen و LARS-WG مقایسه شده است که دقت پیش بینی الگوریتم مارکف پنهان مبتنی بر تمامی معیارها بسیار بیشتر از دو مولد هواشناسی است. بر این اساس، جایگزینی الگوریتم ارائه شده در تحقیق حاضر با دو رهیافت دیگر، برای تولید توالی داده‌های خشک و تر توصیه می گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Viterbi’s Algorithm for Predicting Rainfall Occurrence and Simulating Wet\Dry Spells – Comparison with Common Methods

نویسندگان [English]

  • M. Ghamghami
  • J. Bazrafshan
University of Tehran
چکیده [English]

Today, there arevarious statistical models for the discrete simulation of the rainfall occurrence/non-occurrence with more emphasizing on long-term climatic statistics. Nevertheless, the accuracy of such models or predictions should be improved in short timescale. In the present paper, it is assumed that the rainfall occurrence/non-occurrence sequences follow a two-layer Hidden Markov Model (HMM) consist of a hidden layer (discrete time series of rainfall occurrence and non-occurrence) and an observable layer (weather variables), which is considered as a case study in Khoramabad station during the period of 1961-2005. The decoding algorithm of Viterbi has been used for simulation of wet/dry sequences. Performance of five weather variables, as the observable variables, including air pressure, vapor pressure, diurnal air temperature, relative humidity and dew point temperature for choosing the best observed variables were evaluated using some measures oferror evaluation. Results showed that the variable of diurnal air temperatureis the best observable variable for decoding process of wet/dry sequences, which detects the strong physical relationship between those variables. Also the Viterbi output was compared with ClimGen and LARS-WG weather generators, in terms of two accuracy measures including similarity of climatic statistics and forecasting skills. Finally, it is concluded that HMM has more skills rather than the other two weather generators in simulation of wet and dry spells. Therefore, we recommend the use of HMM instead of two other approaches for generation of wet and dry sequences.

کلیدواژه‌ها [English]

  • HMM
  • Decoding
  • Wet/Dry Spells
  • prediction
1- Ailliot P., Thompson C. and Thompson P. 2008. Space time modelling of precipitation using a hidden markov model and censored Gaussian distributions. Journal of Hydrology, 420:27-51.
2- Buishand T.A. 1978. Some remarks on the use of daily rainfall models. Journal of Hydrology, 36: 295-308.
3- Busuioc A., Tomozeiu R. and Cacciamani C. 2007. Statistical downscaling model based on canonical correlation analysis for winter extreme precipitation events in the Emilia-Romagna region. International journal of climatology (in press).
4- Gabriel K.R. and Neumann J. 1962. A markov chain model for daily rainfall occurrence at Tel Aviv. Quarterly journal of the royal meteorological society, 88(375): 90-95.
5- Gates P. and Tong H. 1976. On markov chain modeling to some weather data. Journal of applied meteorology, 15: 1145-1151.
6- Hopkins J.W. and Robillard P. 1964. Some statistics of daily rainfall occurrence for the Canadian Prairie Provinces. Journal of applied meteorology, 3: 104-118.
7- Hughes J.P. and GuttorpP. 1994. A class of stochastic models for relating synoptic atmospheric patterns to local hydrologic phenomenon. Water Resources Research, 30:1535-1546.
8- Hughes J.P., Guttorp P. and Charles S.P. 1999. A non-homogeneous hidden Markov model for precipitation occurrence. Applied Statistics, 48(1):15-30.
9- Hao Zhang W., Zhang A. and Palazoglu W.S. 2012. Prediction of ozone levels using a hidden markov model (HMM) with gamma distribution. Atmospheric Environment, 62: 64-73.
10- Hocaoglu F.O. 2011. Stochastic approach for daily solar radiation modeling. Journal of Solar Energy, 85: 278-287.
11- Katz R.W. 1981. On some criteria for estimating the order of a markov chain. Technometrics, 23: 243-249.
12- Longley R.W. 1953. The length of dry and wet periods. Quarterly journal of the royal meteorological society, 79: 520-527.
13- Mehrotra R., Srikanthan R. and Sharma A. 2006. A comparison of three stochastic multi-site precipitation occurrence generators. Journal of Hydrology, 331: 280-292.
14- Oliver C. Ibe 2009. Markov proccess for stochastic modeling. John Wiley & Sons, NewYork.
15- Racsko P., Szeidl L. and Semenov M. 1991. A serial approach to local stochastic weather models. Ecological Modeling , 57: 27-41.
16- Richardson C.W. 1981. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resources Research, 17: 182–190.
17- Richardson C.W. and Wright D.A. 1984. WGEN: A model for generating daily weather variables. USDA/ARS, ARS-8, 83 pp.
18- Rolalnd J. and Woolhiser D.A. 1982. Stochastic daily precipitation models: 1) a comparison of occurrence processes. Water Resources Research, 18: 1451-1459.
19- Semenov M.A., Brooks R.J., Barrow E.M. and Richardson C.W. 1998. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Research, 10: 95-107.
20- Srikanthan R., and McMahon T.A. 2001. Stochastic generation of annual, monthly and daily climate data: A review. Hydrology and Earth System Sciences, 5(4): 653–670.
21- Srikanthan R., Thyer M.A., Kuczera G.A. and McMahon T.A. 2002. Application of hidden state markov model to Australian annual rainfall data. CRCCH Working Document (in press).
22- Tae-woongK., Hosung A. and Gunhui C.Ch.Y. 2008. Stochastic multi-site generation of daily rainfall occurrence in south Florida. Stochastic environment research risk assessment, 22:705–717.
23- Wilby R.L., Wigley T.M.L., Conway D., Jones P.D., Hewitson B.C., Main J. and Wilks D.S. 1998. Statistical downscaling of general circulation model output: A comparison of methods. Water Resources Research, 34: 2995-3008.
24- Wilks D.S. 1999. Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Journal of Agricultural Meteorology, 93: 153-169.
25- Williams C.B. 1952. Sequences of wet and of dry days considered in relation to the logarithmic series. Quarterly Journal of the Royal Meteorological Society, 78: 511-516.
CAPTCHA Image