مقایسه روش‌های کشت مستقیم و نشائی برنج تحت روش‌های مختلف آبیاری

نوع مقاله : مقالات پژوهشی

نویسندگان

1 استاد بخش تحقیقات فنی و مهندسی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تات، گرگان، ایران

2 استادیار بخش تحقیقات فنی و مهندسی، موسسه تحقیقات برنج کشور، سازمان تات، رشت، ایران

3 استادیار بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تات، گرگان، ایران

چکیده

چهار روش آبیاری (غرقاب دائم، تناوبی، بارانی، تیپ) و سه روش کشت (مستقیم بذر و مستقیم نشاء بر بستر غیرپادل یا بدون گلخرابی و نشائی سنتی) از نظر عملکرد، مصرف آب و بهره­وری آب برنج در قالب طرح کرت­های نواری بر اساس طرح پایه بلوک­های کامل تصادفی با سه تکرار به مدت دو سال زراعی (1398 و 1399) در گرگان بررسی شدند. مقایسه عملکردهای برنج نشان داد که بالاترین عملکرد ( 8206 کیلوگرم در هکتار) مربوط به کشت نشائی سنتی با روش آبیاری غرقابی بود و در بقیه روش­های آبیاری اختلاف معنی­داری بین عملکردها مشاهده نشد. در کشت نشائی، با تغییر آبیاری سنتی به آبیاری بارانی، متناوب و آبیاری قطره­ای به ترتیب عملکرد در حدود 14، 9 و 11 درصد کاهش داشت. بالاترین مصرف آب مربوط به روش آبیاری غرقابی در کشت مستقیم بذر (12490 متر مکعب در هکتار) و کشت نشائی (11967 متر مکعب در هکتار) بود. با تغییر شیوه آبیاری از غرقاب به قطره­ای در کشت سنتی نشاء در زمین پادل شده، اگرچه عملکرد در حدود 11 درصد کاهش یافت ولی در مقابل مصرف آب در حدود 39 درصد کاهش و در نتیجه بهره-وری آب در حدود 22 درصد افزایش داشت. با تبدیل کشت سنتی نشاء و روش آبیاری غرقابی به کشت مستقیم نشاء و روش آبیاری قطره­ای عملکرد در حدود 24 درصد و مقدار آب در حدود 45 درصد کاهش یافت و بهره­وری آب در این حالت به 9/0 کیلوگرم در متر مکعب رسید که در شرایط حاضر به عنوان بهترین گزینه برای حفظ توأم منابع آبی و تولید انتخاب می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of Rice Direct Seeding and Transplanting Methods under Different Irrigation Methods

نویسندگان [English]

  • A.R. Kiani 1
  • M.R. Yazdani 2
  • M.T. Feyzbakhsh 3
1 Professor of Agricultural Engineering Department, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran
2 Assistant Professor, Agricultural Engineering Department, Rice Research Institute of Iran, Rasht, Iran, AERREO
3 Assistant Professor, Agronomy & Horticulture Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Gorgan, Iran, AERREO
چکیده [English]

Introduction: In Golestan province, despite the lack of water resources, traditional rice cultivation, a crop with high water consumption, is increasing due to economic justification. This issue has become one of the main problems of the province's agricultural sector in recent years. In order to prepare the planting bed (puddled transplanting) in the traditional method of rice production, a significant amount of irrigation water is used before planting the seedlings in the main land. Moreover, the plant is in the water during the growing season, which causes high water losses by surface water evaporation and deep penetration. Rice direct seeding cultivation is a method that has been considered in the world for various reasons, including higher water productivity. Currently, reports indicate that more than 50% of groundwater resources are extracted and allocated annually for rice cultivation in the region investigated. In general, field information and observations indicate that the level of paddy cultivation is increasing in the province. In the past few decades, agricultural policymakers have sought to restrict and ban rice cultivation in the country, except in Gilan and Mazandaran provinces. The rationale behind this decision is high water consumption, declining groundwater aquifers and long-term instability of water resources. The developed strategy did not work effectively, as it did not consider the benefits of the farmers in the short run. The increasing trend in the area under paddy fields from 1995 to 1500 hectares per year shows the unsuccessfulness of this up-to-down strategy.
Materials and Methods: A field experiment was conducted to investigate the effect of rice cultivation and irrigation methods on yield, water consumption and water productivity over two rice cropping seasons (2019–2020) in northern Iran (Gorgan Agricultural Research Station). Irrigation method as the main factor in four levels (permanent flooding, intermittent as wet and dry, sprinkler, tape) and cultivation method in three levels (direct seed in dry bed, non-puddled transplanting and traditional transplanting) in the form of a strip design. The plot was based on a randomized complete block design with three replications. The applied water, yield and some yield components and water productivity were measured and calculated during the growing seasons.
Results and Discussion: The results showed that in all irrigation methods, yield was significantly reduced by changing the traditional seeding transplanting to dry seed. The amount of water applied in sprinkler and drip irrigation methods from traditional seedlings was significantly reduced as compared to direct seed seeding. Dry seed cultivation, however, consumed more water than traditional transplanting in the flood irrigation treatments (wet and dry and permanent). The highest yield (8206 kg/ha) was obtained for traditional seedling cultivation by flood irrigation, and no significant difference was observed between the yields for the other irrigation methods. In general, changing the irrigation systems had a greater effect on water consumption than changing the rice cultivation method. In addition, changing the cultivation method had a greater effect on changing the type of irrigation systems. In traditional transplanting cultivation, the yield decreased by about 14, 9 and 11%, respectively, by changing the irrigation systems from permanent flood irrigation to sprinkler, wet and dry, and drip irrigation. The highest water use was observed for flood irrigation method in direct seeding (12490 m3/ha) and direct transplanting (11967 m3/ha).
Conclusion: Currently, farmers cultivate rice by transplanting in padded land irrigated by flooding techniques in Golestan province, which results in high water consumption (about 13,000 m3/ha). By changing the irrigation method from flood irrigation to drip for traditional transplanting cultivation, water consumption decreased by about 39% and as a result water productivity increased by about 22%, albeit a 11% reduction in yield occurred. With the conversion of traditional transplanting seedling by flood irrigation to non-puddled transplanting by drip irrigation, the yield decreased by about 24% and the amount of water by about 45%, and water productivity in this case reached 0.9 kg/m3. This can be considered as the best alternative for conserving both water resources and production. If only reducing water consumption is the main priority (regardless of yield reduction), the best treatments are drip irrigation with direct seeding, non-puddled transplanting and then traditional seedling, respectively. If there is a sprinkler irrigation system in the field, this option is given priority in the direct seeding and non-puddled transplanting. If changing the irrigation system is not considered, the use of intermittent irrigation (as a wet and dry) with non-puddled transplanting, traditional methods and direct seeding are preferred, respectively.

کلیدواژه‌ها [English]

  • Direct seeding
  • Gorgan
  • New irrigation systems
  • Rice
  • Transplanting
  • Bansal R., Sharma N., Soman P., Singh S., Bhardwaj A.K., Pandiaraj T., and Bhardwaj R.K. 2018. On-Farm Drip Irrigation in Rice for Higher Productivity and Profitability in Haryana, India. International Journal of Current Microbiology and Applied Sciences 7(2): 506-512.
  • Bouman B. A. M., Wang H., Yang X., Zhao J. F., and Wang C.G. 2002. Aerobic rice, a new way of growing rice in water-short areas. P. 175–181. In E.D. Han Dao (ed) in Proceedings of the 12th International Soil Conservation Organization Conference, Beijing, China.
  • He H., Ma F., Yang R., Chen, L., Jia B., Cui J., Fan H., Wang X., and Li L. 2013. Rice performance and water use efficiency under plastic mulching with drip irrigation. Journal PLoS One 8(12): 8310-8312.
  • Cabangon R.J., and Abdullah N.B. 2002. Comparing water input and water productivity of transplanted and direct-seeded rice production systems. Agricultural Water Management 57: 11–31. 
  • Gilani A., and Rezaei M. 2001.Comparison of Sprinkler and Flood Irrigation Application for Rice Direct Seeding Cultivation in Khuzestan. Agricultural Research,Education and Extension Organization (AREEO). Final report. (In Persian with English abstract)
  • Kaur J., and Singh A. 2017. Direct Seeded Rice : Prospects, Problems Constraints and Researchable Issues in India, Current Agriculture Research Journal 5(1): 13-32.
  • Kiani A.R. 2020. Determination of rice water requirement in Golestan province. Shalizar Extension Journal 1(2): 57-63. (In Persian with English abstract)
  • Kiani A.R., and Razzaghi M.H. 2021. The effectiveness of rice direct seeding on yield and water productivity in rice fields of Golestan Province, Agricultural Research, Education and Extension Organization (AREEO) Technical report No: 58938. (In Persian with English abstract)
  • Kumar V., and Ladha J. K. 2011. Direct seeding of rice: recent developments and future research needs. Adv. Agron. 111: 297–413. doi: 10.1016/B978-0-12-387689-8.00001-1
  • Kumar V., Ladha J.K., and Gathala M.K. 2009. Direct drill-seeded rice: a need of the day, in Annual Meeting of Agronomy Society of America (Pittsburgh, PA). Available online at: http://a-c-s.confex.com/crops/2009am/webprogram/Paper53386.html
  • Li Y.H. Research and practice of water-saving irrigation for rice in China. P. 135–144. In E.D. Barker B., Li Y. and Tuong T. P. in Proceedings of an International Workshop, Water-Saving Irrigation for Rice, 23-25 March 2001. Wuhan; Colombo: International Water Management Institute.
  • Mahajan G., Chauhan B.S., Timsina J., Singh P.P., and Singh K. 2012. Crop performance and water- and nitrogen-use efficiencies in dry-seeded rice in response to irrigation and fertilizer amounts in northwest India. Field Crops Research 134: 59–70.
  • Monaco F., Sali G., Ben Hassen M., Facchi A., Romani M., and Valè G. 2016. Water management options for rice cultivation in a temperate area: a multi-objective model to explore economic and water saving results. Water 8: 336–355. doi: 10.3390/w8080336.
  • Naresh R.K., Misra A.K., and Singh S.P. 2013. Assessment of Direct Seeded and Transplanting Methods of Rice Cultivars in the Western Part of Uttar Pradesh. International Journal of Pharmaceutical Sciences and Business Management 1: 1-8.
  • Nie L., Peng S., Chen M., Shah F., Huang J., and Cui K. 2012. Aerobic rice for water-saving in agriculture: a review. Agron. Sustain. Dev. 32: 411–418. doi: 10.1007/s13593-011-0055-8.
  • Patel D.P., Das A., Munda G.C., Ghosh P.K., Bordoloi S.J., and Kumar M. 2010. Evaluation of yield and physiological attributes of high yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem. Agric Water Manage 97: 1269-1276.
  • Rajwade Y.A., Swain D.K., and Tiwari K.N. 2014. Subsurface Drip Irrigation for Wet Season Rice Production under Climate Variability in India. Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, Medinipore (W), West Bengal, INDIA. p.p:293-300.
  • Ramulu V., Praveen rao V., Uma devi M., Avil kumar K., and Radhika K. 2016. Evaluation of drip irrigation and fertigation levels in aerobic rice for higher water productivity 2nd world irrigation forum 6-8 November 2016, Chiang mai, Thailand.
  • Rashid M.H., Alam M.M., Khan M.A.H., and Ladha J.K. 2009. Productivity and resource use of direct-(drum)-seeded and transplanted rice in puddled soils in rice-rice and rice-wheat ecosystem. Field Crops Res. 113: 274–281. doi: 10.1016/j.fcr.2009.06.004.
  • Rasul G. 2016. Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Environ. Dev. 18: 14–25. doi: 10.1016/j.envdev.2015.12.001.
  • Sandhu N., Yadaw R.B., Chaudhary B., Prasai H., Iftekharuddaula K., Venkateshwarlu C., Annamalai A., Xangsayasane P., Battan K.R., Ram M., Cruz M.T.S., Pablico P., Maturan P.C., Raman K.A., Catolos M. and Kumar A. Evaluating the performance of rice genotypes for improving yield and adaptability under direct seeded aerobic cultivation conditions. Front. Plant Sci. 10:1-15. doi: 10.3389/fpls.2019.00159.
  • Sharda R., Mahajan G., Siag M., Singh A., and Chauhan B.S. 2016. Performance of drip-irrigated dry-seeded rice (Oryza sativa) in South Asia. The International Society of Paddy and Water Environment Engineering and Springer Japan, 8 p.p
  • Sidhu A.S., Kooner R., and Verma A. On-farm assessment of direct-seeded rice production system under central Punjab conditions. Journal of Crop and Weed 10(1): 56-60.
  • Singh 2014. Evaluation of different methods of direct sowing of paddy. International Journal of Agricultural Engineering 7(1): 275-277.
  • Singh S., Sharma S.N., and Prasad R. 2000. The effect of seeding and tillage methods on productivity of rice–wheat cropping system. Soil & Tillage Research 61(2001): 125–131.
  • Stoop W., Uphoff, and Kassam A. 2002. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource-poor farmers. Agric. Syst. 71: 249–274. doi: 10.1016/S0308-521X(01)00070-1.
  • Tabbal D.F., Bouman B.A.M., Bhuiyan S.I., Sibayan E.B., and Sattar M.A. 2002. On-farm strategies for reducing water input in irrigated rice: case studies in the Philippines. Agric. Water Manag 56: 93–112. doi: 10.1016/S0378-3774(02)00007-0.
  • 2016. USGS Fact Sheet. Available online at: http://water.usgs.gov/edu/ gwdepletion.html.
  • Xu L., Li X., Wang X., Xiong D., and Wang F. 2019. Comparing the Grain Yields of Direct-Seeded and Transplanted Rice: A Meta-Analysis. Agronomy, 14 pp.
  • Wang H., Boumam B. A. M., Zhao D., Wang C., and Moya P.F. 2002. Aerobic rice in northern China: opportunities and challenges, P.143–154. In E.D. Bouman B. A. M., Hengsdijk H., Hardy B., Bindraban P. S., Tuong T. P., and Ladha J. K. (ed), in Proceedings of the International Workshop on Water-Wise Rice Production, Water-Wise Rice Production, 8-11 April, Los Baños: International Rice Research Institute.
  • Weller S., Janz B., Jörg L., Kraus D., Racela H.S., and Wassmann R. 2016. Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Glob. Change Biol. 22: 432–448. doi: 10.1111/gcb.13099.
CAPTCHA Image