Document Type : Research Article

Authors

1 Ferdowsi University of Mashhad

2 Islamic Azad University

3 Guilan University

Abstract

Uncertainty analysis is a useful tool to evaluate soil water simulations in order to get more information about the models output. These information provide more confidence for decision making processes. In this study, SWAP model is applied for soil water balance simulations in two fields which are planted by wheat and maize in an arid region. First the amount of uncertainty is estimated and compared for soil moisture simulation by using Generalized Likelihood Uncertainty Estimation (GLUE) in the two fields. Then based on the computed parameter uncertainty, the effect of uncertainty in soil moisture simulation is evaluated on soil water balance components. Results indicated that in arid regions with irrigated agricultural fields, prediction of actual evapotranspiration is relatively precise and the coefficient of variation for the two fields are less than 4%. Moreover, the prediction of deep percolation for the two fields are influenced by the uncertain hydraulic conductivity and showed lower precision according to the actual evapotranspiration.

Keywords

1- دهقان ه.، علیزاده ا. و حقایقی مقدم ا. 1389. تخمین اجزای بیلان آب در مقیاس مزرعه با مدل شبیه سازی SWAP. مجله آب و خاک، جلد 24، شماره 6، ص 1276-1265.
2- نوری ح.، لیاقت ع.، پارسی نژاد م. و وظیفه دوست م. 1389. برآورد عملکرد گندم و ذرت علوفه ای در شرایط محدودیت توام آبیاری و شوری با استفاده از مدل آگروهیدرولوژی SWAP. آب و خاک، جلد 24(6)، ص 494-484.
3- وظیفه دوست م.، علیزاده ا.، کمالی غ. و فیضی م. 1386. افزایش بهره وری آب کشاورزی در مزارع تحت آبیاری منطقه برخوار اصفهان. آب و خاک، جلد 22، شماره 2، ص 494-484.
4- Allen R., Pereira L.S., Raes D., and Smith M. 1998. FAO, Irrigation and drainage Paper 56, Crop evapotranspiration, Guidelines for computing crop water requirements. Rome, Italy, p. 297.
5- Baroni G., Facchi A., Gandolfi C., Ortuani B., Horeschi D., Van Dam J.C. 2010. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity. Hydrol. Earth Syst. Sci. 14, 251–270.
6- Beven K.J. and Binley A. 1992. The future of distributed models: model calibration and uncertainty prediction, Hydrol. Processes, 6(3): 279-298.
7- Beven K.J. and Freer J. 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 249 (1–4), 11–29.
8- Droogers P. 2000. Estimating actual evapotranspiration using a detailed agro-hydrological model. J. Hydrol. 229, 50–58.
9- He J., Dukes M.D., Jones J.W., Graham W.D. and Judge J. 2009, Applying GLUE for estimating CERES-Maiz genetic and soil parameters for sweet corn production, Transactions of the ASABE 52 6 1907–1921.
10- Hupet F., Lambot S., Feddes R.A., Van Dam J.C., and Vanclooster M. 2003. Estimation of root water uptake parameters by inverse modeling with soil water content data. Water Resour. Res. 39:(11) doi: 10.129/2003WR002046.
11- Ines A.V.M., and Droogers P. 2002. Inverse modeling in estimating soil hydraulic functions: A genetic algorithm approach, Hydrol Earth Syst Sci., 6, 49–65.
12- Iizumi T, Yokozawa M., and Nishimori M. 2009, Parameter estimation and uncertainty analysis of a large scale crop model for paddy rice: Application of a Bayesian approach, agricultural and forest meteorology 149. 333 –348.
13- Jhorar R.K., Bastiaanssen W.G.M., Feddes R.A., Van Dam J.C. 2002. Inversely estimating soil hydraulic functions using evapotranspiration fluxes. J. Hydrol. 258, 198–213.
14- Juston J., Seibert J., and Johansson P.O. 2010. Temporal sampling strategies and uncertainty in calibrating a conceptual hydrological model for a small boreal catchment. Hydrological Processes 23 (21), 3093–3109.
15- Kroes J.G., and Van Dam J.C. 2003. Reference Manual SWAP version 3.0.3, Alterra-rapport 773, ISSN 1566–7197. 367, 93–103.
16- Ma Y., Feng S., Huo Z., and Song X. 2011. Application of the SWAP model to simulate the field water cycle under deficit irrigation in Beijing, China. Math. Comput. Model. 54, 1044–1052.
17- Singh R., Van Dam J.C., and Feddes R.A. 2006. Water Productivity analysis of irrigated crops in Sirsa district, India. Agric. Water Manage. 82: 253-278.
18- Singh U., and Kang L. 2010. Simulation of soil water in space and time using an agro-hydrological model and remote sensing techniques. Agric. Water Manage. 97: 1210-1220.
19- Tung Y., and Yen B. 2006. Hydrosystem Engineering Uncertainty Analysis. McGraw-Hill Book Company, NY, USA.
20- Vachaud G. and Chen T. 2002. Sensitivity of a large-scale hydrologic model to quality of input data obtained at different scales; distributed versus stochastic non-distributed modeling, J. Hydrol., 264, 101–112.
21- Van Genuchten M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of soil. Soil Sci. Am. J. 44, 892–898.
22- Van Dam J.C., Huygen J., Wesseling J.G., Feddes R.A., Kabat P.,Van Walsum P.E.V., Groenendijk P., and Van Diepen C.A. 1997. Theory of SWAP version 2.0. Simulation of water flow, solute transport and plant growth in the Soil–Water–Atmosphere–Plant environment. Report 71, Sub department of Water Resources, Wageningen University, Technical document 45, Alterra Green World Research, Wageningen, The Netherlands, 167 pp.
23- Vazifedoust M. 2007. Development of an agricultural drought assessment system: integration of agrohydrological modeling, remote sensing and geographical information. Dissertation PhD thesis. Wegeningen University.
24- Vazquez R.F., Beven K., and Feyen J. 2009. GLUE based assessment on the overall pre-dictions of a MIKE SHE application, Water Resour. Manage. 23, 1325–1349.
25- Vrugt J.A., Ter Braak C. J.F., Gupta H.V., and Robinson B.A. 2008. Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches to hydrologic modeling, Stoch. Env. Res. Risk A., 23, 1059 – 1060, doi: 10.1007/s00477-008-0274-y.
26- Vrugt J.A., Ter Braak C.J.F., Clark M.P., Hyman J.M., Robinson B.A. 2008. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res. 44, W00B09, doi:10.1029/2007WR006720.
CAPTCHA Image