دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه تهران

چکیده

قانون دارسی خاص هیدرولیک جریان آرام است و برای جریان متلاطم کاربرد آن توصیه نمیشود. معادلات حاکم بر جریانهای متلاطم با استفاده از روابط حاکم بر اصول اساسی هیدرودینامیک و اعمال اثر آشفتگی به دست میآیند. این معادلات به دلیل ماهیت پیچیده جریان متلاطم به صورت معادلات دیفرانسیل با مشتقات جزئی بیان میشوند. در این راستا تاکنون روابط متعددی توسط محققین مختلف به منظور شناسایی ویژگیهای این نوع جریان از جمله تعیین گرادیان هیدرولیکی در محیط متخلخل درشت دانه ارائه شده لیکن هر کدام از آنها فقط در محدودهای خاص از تخلخل و دانهبندی محیط متخلخل سنگدانهای دارای کاربرد میباشند. هدف از انجام این تحقیق بدست آوردن روابط مناسب در محیط متخلخل به گونهای است که در محدوده وسیعتری از تخلخل و دانه‌بندی ذرات سازنده محیط متخلخل قابل کاربرد باشد. بدین منظور با استفاده از بخش عمدهای از نتایج آزمایشگاهی موجود و تجزیه و تحلیل آنها، رابطۀ جدیدی بین گرادیان هیدورلیکی و سرعت در محیط متخلخل ارائه شد که در محدوده وسیعتری از مقادیر قطر سنگدانه، عدد رینولدز، و تخلخل کاربرد دارد. با استفاده از باقیمانده نتایج آزمایشگاهی موجود، نتایج حاصل از کاربرد رابطۀ جدید با نتایج حاصل از کاربرد روابط موجود مقایسه شده و مشخص شد که خطای نسبی رابطۀ جدید فقط 14 درصد است که نسبت به معادلات موجود دارای کمترین مقدار خطای نسبی میباشد. در نتیجه مشاهده میشود که علاوه بر امکان کاربرد معادلۀ جدید در محدوده وسیعتری از مقادیر پارامترهای دخیل، رابطۀ جدید دارای درستی بیشتری نسبت به سایر معادلات میباشد.

کلیدواژه‌ها

عنوان مقاله [English]

Introducing a Relationship to Estimate Hydraulic Gradient in Non-Darcy Turbulent Flow in Porous Media

نویسندگان [English]

  • M. Moradi Tayyebi
  • E. Amiri Tokaldany

University of Tehran

چکیده [English]

Introduction: Study of flow characteristics in rock porous media is one the most interesting issues for scientists and engineering dealing with river engineering works. So, there is no surprise that many models to describe the relationship between the flow velocity of clear water with hydraulic gradient, rock size, porosity, Reynolds number, and kinematic viscosity, have been introduced. Due to the large spaces between the coarse materials, flow velocity passing through the materials is high which in turn results in higher amounts of Reynolds number of flow. This type of flow classified as turbulent flow. Although Darcy law rules the flow in porous media, it is used for laminar flow in fine porous media and its application is not recommended for turbulent flows. Moreover, as the flow parameters in turbulent flows vary against time, the state of the flow is not steady. The equations describing the turbulent flows are obtained using equations defining basic concepts of hydrodynamics and turbulence effects. Due to complexity of the turbulent flow, these equations are described in the form of the partial differential equations. In order to introduce the specifications of this type of flow, various relationships have been provided by many researchers. However, their applications are confined to the limited conditions of porosity and size materials. In this study, we aim to provide a relationship which can be applied for a wide range of porosity and material size of porous media.
Materials and Methods: To describe the relation between effective hydraulic parameters in coarse porous media, we used dimensional analysis theorem of Buckingham. In this regard six dimensionless parameters have been provided from which a relationship including four constant parameters has been obtained. We used a part of (70 percent) several available sets of data, provided from Soil Conservation and Watershed Management Research Institute, Irrigation and Reclamation Engineering Department of the University of Tehran, and mostly from published results, to find the magnitude of the constant parameters. So, we introduced a new equation which expresses a relationship between hydraulic gradient, porosity, and Froud number. Finally, using the remained part of (30 percent) available data, we compared the results of the new equation with those obtained from available models.
Results and Discussion: To evaluate the new introduced equation and comparing the results obtained from the new equation and those obtained from available equations, we computed the magnitude of relative errors as well as the mean relative errors of the hydraulic gradient estimated from all equations versus the hydraulic gradients provided from field and laboratory observations. It is found that the new equation has the least mean of relative error (15.3 percent) among all equations. Moreover, for various magnitudes of rock size as well as porosity, we computed the mean relative error of estimated hydraulic gradients according to observed data. We found that the new equation has the second largest accuracy (with the mean error of 11.64%) among all evaluated models in this research. Finally, we developed two relationships between hydraulic gradient and Froud number using actual as well as apparent velocities. Again, it is found that the new relationship has the least mean of relative error (14.03 percent) among all equations.
Conclusion: Since all available equations introduced to express the flow characteristics in coarse porous media, can be used in a defined limits of porosity, rock size, etc., in this research we aimed to provide a new relationship which can be used for a wider range of porous media specifications. So, based on dimensional analysis and using several sets of available field and laboratory data, a new equation has been introduced in this research which can be used for a wide range of rock size, Reynolds number, and porosity; i.e. rock diameter of 0.5 to 20 cm, Reynolds number greater than 100, and porosity of 0.35 to 0.55. Moreover, we introduced two equations to demonstrate the relationship between hydraulic gradient and actual velocity as well as apparent velocity. When we evaluated the results obtained from the new relationship with those obtained from some available equations, we found that the relative error of the new equation is 14 percent, which illustrates that the error of the results produced by the new equation is less than those produced by the available equations.

کلیدواژه‌ها [English]

  • Coarse material
  • porosity
  • Reynolds Number
  • Turbulent Flow
  • velocity
1- Bazargan J. 2002. Investigating the design criteria of rockfill intakes. Ph.D. thesis. Faculty of Civil, Amir Kabir University, Tehran, Iran. (in Persian with English abstract).
2- Ergun S. 1952. Fluid flow through packed columns. Chemical Engineering Progress, 48: 89-94.
3- Ghazimoradi A. 1996. Study through the effects of detention rockfill dams permeability on flood control and suspended and bed load sedimentation. A research project approved by Research Institute of Soil and Watershed Protection, Ministry of Jehad Keshavarzi.
4- Ghazimoradi A. 2006. Investigation of the effects of overflow on the flow specifications in detention rockfill dams. A research project approved by Research Institute of Soil and Watershed Protection, Ministry of Jehad Keshavarzi.
5- George G.H. and Hansen D. 1992. Conversion between quadratic and power law for non-Darcy flow. Journal of Hydraulic Engineering, ASCE, 115(5): 792-797.
6- Hansen D. 1992. The behavior of flow through rockfill dams. PhD thesis. Dept. of Civil Engineering, University of Ottawa, Ontario, Canada.
7- Herrera N.M. and Felton G.K. 1991. Hydraulic of flow through a rockfill dam using sediment-free water. Journal of Hydraulic Engineering, 34(3): 871-875.
8- Hill R.J. and Koch D.L. 2002. The transition from steady to weakly turbulent flow in a close-packed ordered array of spheres. Journal of Fluid Mechanics, 465: 59–97.
9- Jafari H. 2001. Investigation the flow hydraulics in porous media made of round-edge rockfill river material with the diameter of 10 to 20 cm. M. Sc. Thesis in Water Structures, University of Tarbiat Modarres, Tehran, Iran. (in Persian with English abstract).
10- Joy D.M., Lennox W.C. and Kouwen, N. 1991. Particulate transport in a porous media under nonlinear flow conditions. Journal of Hydraulic Research, 29(3): 373-385.
11- Kadlec H.R. and Knight L.R. 1996. Treatment Wetlands. Lewis Publishers, USA.
12- Li B., Garga V.K. and Davis M.H. 1998. Relationships for non-Darcy flow in rockfill. Journal of Hydraulic Engineering, ASCE, 124: 206-212.
13- Martins R. 1990. Turbulent seepage flow-through rockfill structures. International Water Power Dam Construction, 40(3): 41–45.
14- McCorquodale J.A., Hannoura. A.A. and Nasser M.S. 1978. Hydraulic conductivity of rockfill. Journal of Hydraulic Research, Delft, The Netherlands, 16(2): 123-137.
15- Mosavi S.A., Amiri Tokaldany, E. and Davoudi M.H. 2011. Introducing relationships to determine the critical hydraulic gradient at non-cohesive sediment transport discharge in rockfill dams. Soil and Water Journal (Agricultural Science and industrial), 25(6): 1238-1249, (in Persian with English abstract).
16- Moutsopoulos K.N., Papaspyros J.N.E. and Tsihrintzis V.A. 2009. Experimental investigation of inertial flow processes in porous media. Journal of Hydrology, 374: 242–254.
17- Parkins A.K. 1991. Through and over flow rockfill dams. P. 572-592. In E.M. das Neves (ed.) Advances in rockfill structures, Kluwer Academic Publishers Group, Boston, USA.
18- Sedghi-Asl M., Rahimi H. and Salehi R. 2014. Non-Darcy flow of water through a packed column test. Journal of Transport Porous Media, 100(2): 215-227.
19- Shafaee Bajestan M. 2011. Physical and hydraulic models. Second Edition, University of Shahid Chamran, Ahvaz, Iran. (in Persian).
20- Sidiropoulou M.G., Moutsopoulos K.N. and Tsihrintzis, V.A. 2007. Determination of Forchheimer equation coefficients a and b. Hydrological Process. 21(4): 534–554.
21- Stephenson D. 1979. Rockfill in hydraulic engineering. Elsevier Scientific, Amsterdam.
22- Van Gent M.R.A. 1992. Formulae to describe porous flow. Communications on Hydraulic and Geotechnical Engineering, Delft University of Technology, Delft. The Netherlands.
23- Wilkins J. 1956. Flow of water through rockfill and its application to the design of dams. Paper presented at the 2nd Australia New Zealand Conference on soil Mech. and Fund Engineering, Adelaide, Australia.
24- Ward J. C. 1964. Turbulent flow in porous media. Journal of Hydraulic Division, ASCE 90 (5): 1-12.
25- Yoshioka M. and Tosaka H. 2012. Review on non-Darcy flow in highly permeable porous media. Journal of Groundwater Hydrology, 52(3): 275-284.
CAPTCHA Image