دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی

چکیده

تغییر اقلیم یکی از مهمترین چالش‌های فراروی بشر در قرن جاری است که به نظر می‌رسد اثرات آن در افغانستان به خصوص در بخش کشاورزی بسیار شدید باشد. مطالعه این اثرات بیش از هر چیز مستلزم دسترسی به داده‌های هواشناسی دقیق و کافی به خصوص برای متغیرهای دما و بارش است، اما به دلایل مختلف این داده‌ها در افغانستان از دقت و کفایت لازم برخوردار نیستند. در این پژوهش امکان استفاده از پایگاه داده AgMERRA از طریق مقایسه داده‌های آن با داده‌های ثبت شده‌ی چهار ایستگاه سینوپتیک مهم در افغانستان با استفاده از پنج شاخص نکویی برازش (RMSE، NRMSE، MBE، R2 و d)، الگوی تغییرات فصلی و نیز تابع توزیع احتمال آنها مورد بررسی قرار گرفت. نتایج این مطالعه بیانگر قدرت و کارایی لازم داده‌های AgMERRA برای پر کردن خلأها و قابلیت مطلوب آن در تولید سری داده‌های هواشناسی بود. نتایج حاصل از طریق شاخص NRMSE بیانگر قرار گرفتن مقادیر شبیه‌سازی شده در رده عالی و خوب در تمامی ایستگاه‌ها و مقیاس‌های زمانی بود. مقدار شاخص R2 برای شبیه‌سازی درجه حرارت در فواصل زمانی روزانه، 14 روزه و ماهانه بیش از 86/0 بود. بارش در مقیاس زمانی روزانه دارای R2 نامناسب بود، اما با افزایش مقیاس زمانی به 14 روزه و ماهانه مقدار R2 آن در حد قابل قبولی افزایش یافت. مقادیر ضریب توافق d نیز برای بارش‌های 14 روزه و ماهانه مناسب بود (حداقل 87/0). داده‌های شبیه‌سازی شده‌ی AgMERRA در مقیاس ماهانه تبعیت خوبی از الگوی فصلی داده‌های ایستگاهی نشان داد. با این وجود مقادیری از تخمین‌های کمتر و بیشتر از حد واقعی به خصوص در ایستگاه کابل مشاهده شد. این تبعیت از الگو در مقیاس روزانه نیز برای متغیرهای هواشناسی مورد مطالعه در حد قابل قبول بود، اگرچه AgMERRA نتوانست برخی از نوسانات موجود در توزیع احتمال داده‌های دمای حداکثر و حداقل (با بازه یک درجه سانتی‌گراد) را به خوبی شبیه‌سازی نماید.

کلیدواژه‌ها

عنوان مقاله [English]

Applicability of Agmerra for Gap-Filling of Afghanistan in-situ Temperature and Precipitation Data

نویسندگان [English]

  • Ahmad Reza Razavi 1
  • Mahdi Nassiri Mahallati 1
  • Alireza Koocheki 1
  • Alireza Beheshti 2

1 Ferdowsi University of Mashhad

2 Khorasan Razavi agriculture and natural resources research and education center

چکیده [English]

Introduction: Climate change (CC) is one of the most important concerns for mankind in the current century. Increasing CO2 concentration and the proof of the greenhouse effect theory in which the type and composition of atmospheric gases which influence the earth temperature, are among undeniable facts makes the future climate change more possible. Impacts of Global warming on hydrological cycles and precipitation patterns would be more prominent in arid and semi-arid regions of the earth. For the arid and semi-arid nature and the poverty more fraction of Afghanistan suffer from, it is likely that the impacts of CC on the country will be more intense. This is while there is no credible and reliant research addressing the impacts of CC on agriculture and food security sector of Afghanistan. Studying the impacts of CC on agriculture, future changes in agroclimatic indices and application of crop growth simulation models intensively require a precise and adequate sets of meteorological data. Because of many reasons, Afghanistan's historical meteorological data coverage is really weak. In this research the applicability of AgMERRA as a gauge-satellite based dataset for filling the Afghanistan in-situ meteorological gaps is evaluated via goodness of fit measures, patterns of seasonal changes and the probability distribution functions.
Materials and Methods: This study is conducted on four major stations of Afghanistan (Kabul, Herat, Mazar Sharif and Qandahar in the east, west, north and south of the country, respectively) (Fig. 1 and table 1) which had the best in-situ meteorological data coverage. Observed Maximum (Tmax) and Minimum temperature (Tmin) and precipitation (PRCP) data is collected via Afghanistan Meteorological Authority (AMA) or other sources. AgMERRA database downloaded with .nc4 format and extracted with R statistical software or Panoply ver. 4.8.4, dependently. Then five goodness of fit (GOF) measures (RMSE, NRMSE, MBE, R2 and d) are calculated according to the equations 1 to 5. There are different norms and indices to measure the validity of a models, some based on Pearson correlation coefficient (R and R2) which indicate the degree of correlation between observed and predicted data but have some amounts of sensitivity to extreme values (outliers). Although, many other measures are considered to overcome the weaknesses but it is hard to distinguish the best.
Results and Discussion: The results of this research indicated the good potency, effectiveness and ability of AgMERRA for gap-filling of in-situ meteorological data and producing spatiotemporal data series. Several studies in this area have almost the same results. It is reported that AgMERRA is the most applicable dataset for reflecting precipitation data comparing with ERA-Interim, ERA-Interim/Land and JRA-55 datasets. Comparisons via NRMSE shows great (>10%) and good (>20%) amounts in all stations and temporal scales. Among other stations, Mazar Shrif showed the best conformity between AgMERRA and observed data, while Kabul station had the weakest, probably due to complex topographic situation of the Kabul airport station. The amounts of R2 for predicting temperature (Tmax and Tmin) were more than 0.86 in daily, 14-days and monthly temporal scales. The lowest amount of the coefficient of determination was obtained at Qandahar station for Tmean in daily temporal scale (R2=0.8) and the highest amount obtained for daily Tmax at Mazar Sharif station (R2=0.947). R2 for daily PRCP were inadequate, but increasing to adequate amounts in 14-days and monthly temporal scales. The highest spatiotemporal amount of Tmax,Tmin and Tmean was obtained in daily scale and the lowest amount was obtained for Tmean (1.8 and 0.9, respectively). The Index of agreement (d), also had adequate amounts for 14-days and monthly PRCP (>0.87). The amount of MBE for precipitation in Herat, Mazar Sharif and Kabul stations were negative, while it was positive in Qandahar station with a hot and dry climate. AgMERRA could show a good compliance with changes of observed seasonal patterns, however, some amount of over and under-estimates are obvious especially for Kabul station. This compliance with in-situ observed patterns was acceptable for daily temporal scale, although AgMERRA was unable to predict some of the fluctuations in probability distribution composition (with the range of 1 °C), especially fot Tmax and Tmin, but fot Tmean the fluctuations simulated well.
Conclusion: According to the results of the study, AgMERRA showed an acceptable potency to simulate the in-situ meteorological data in four major studied stations of Afghanistan. According to the stochastic nature of PRCP, the variable showed the weakest results in daily temporal scale but acceptable in 14-days and monthly. Given the weak coverage of in-situ meteorological data of Afghanistan, AgMERRA could be a valid dataset for producing well scaled spatiotemporal data series to be used in agroclimatic, CC and crop growth modeling studies.

کلیدواژه‌ها [English]

  • Climate change
  • Goodness of fit
  • Kabul
  • Meteorology
  • Meteorological data
1- Allen R.J., and De Gaetano A.T. 2001. Estimating missing daily temperature extremes using an optimized regression approach. International Journal of Climatology, 21:1305–1319.
2- Bannayan M., Lashkari A., Zare H., Asadi S., and Salehnia N. 2015. Applicability of AgMERRA forcing dataset to fill gaps in historical in-situ meteorological data. In: American Geophysical Union, Fall Meeting 2015. Abstract #GC13D-1180. 2015AGUFMGC13D1180B. Washington DC: American Geophysical Union.
3- Burroughs W. 2003. Climate into the 21st Century. Cambridge University Press, 240 pp.
4- Carson D. J. 1999. Climate modelling: achievements and prospects. Quarterly Journal of Royal Meteorological Society, 125:1–28.
5- Ceglar A., Toreti A., Balsamo G., and Kobayashi S. 2017. Precipitation over Monsoon Asia: a comparison of reanalyses and observations. Journal of Climate, 30(2):465–476.
6- Ghafourian H., and Sanaei Nejad H. 2013. Drought monitoring using TRMM dataset in Razavi Khorasan Province. MSc thesis in Agrometeorology, Ferdowsi University of Mashhad.
7- Ghazanfari Moghaddam M.S., Alizadeh A., MousaviBaygi S.M., Faridhosseini A.R., and Bannayan M. 2011. Comparison the PERSIANN Model with the Interpolation Method to Estimate Daily Precipitation (A Case Study: North Khorasan). Journal of Water and Soil, 25 (1):207-2015. (In Persian with English summary)
8- Goovaerts P. 1997. Geostatistics for natural resources evaluation, Oxford University Press, New York, Oxford, Vol. 483.
9- Greene A.M., and Allis E.C. 2014. A Stochastic Climate Generator for Agriculture in Southeast Asian Domains, American Geophysical Union, Fall Meeting 2014, abstract #GC23D-0663.
10- Hijmans R.J., Cameron S.E., Para J.L., Jones P.G., and Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25:1965–1978.
11- Hong Y., Hsu K., Gao X., and Sorooshian S. 2004. Precipitation estimation from remotely sensed imagery using artificial neural network cloud classification system. Journal of Applied Meteorology, 43:1834–1853.
12- Huffman G. J., Adler R. F., Bolvin D. T., Gu G., Nelkin E. J., Bowman K. P., Hong Y., Stocker E. F., and Wolff D. B. 2007. The TRMM Multi-satellite Precipitation Analysis: Quasi-Global, Multi-Year, Combined-Sensor Precipitation Estimates at Fine Scale. Journal of Hydrometeorology, 8:38-55.
13- Kessler E., and Neas B. 1994. On correlation, with applications to the radar and raingage measurement of rainfall, Atmospheric Researches, 34:217-229.
14- Kira O., Nguy-Robertson A.L., Arkebauer T.J., Linker R., and Gitelson A.A. 2017. Toward Generic Models for Green LAI Estimation in Maize and Soybean: Satellite Observations. Remote Sensing, 9:318.
15- Koocheki A., Nassiri Mahallati M., and Jafari L. 2016. Evaluation of Climate Change Effect on Agricultural Production of Iran: I. Predicting the Future Agroclimatic Conditions. Iranian Journal of Crop production, 13(4): 651-664. (In Persian with English summary)
16- Lashkari A., Bannayan M., Zare A., Asadi A., and Salehnia N. 2015. Applicability of AgMERRA forcing dataset to fill the gaps in historical in-situ meteorological data, case study: Iran. AGU FALL MEETING, San-Francisco.
17- Lashkari A., Bannayan M., Koocheki A., Alizadeh A., Choi Y. S., and Park S. K. 2016. Applicability of AgMERRA forcing dataset for gap-filling of in-situ meteorological observation, Case Study: Mashhad Plain. Journal of Water and Soil, 29(6):1749-1758.
18- Legates D. R. 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1): 33-241.
19- Legates D. R., and Davis R. E. 1997. The continuing search for an anthropogenic climate change signal: Limitations of correlation-based approaches, Geophysical Research Letters, 24:2319-2322.
20- Legates D. R., and McCabe Jr.G.J. 1999. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water and Resources Research, 35(1):233-241.
21- Mohanty M., Sinha N.K., and Patra A.K. 2015. Crop Growth Simulation Models in Agricultural Crop Production: 1-27 in Crop Growth Simulation Modelling and Climate Change. Mohanty M., Sinha N. K., Hati K. M., Chaudhary R. S., Patra A.K. (ed.) Scientific Publishers, India.
22- Nalder I.A., and Wein R.W. 1998. Spatial interpolation of climatic normal: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology, 92:211–225.
23- New M., Hulme M., and Jones P. 1999. Representing twentieth century space-time climate variability. Part I. Development of a 1961–1990 mean monthly terrestrial climatology. Journal of Climate, 12:829–856.
24- New M., Lister D., Hulme M., and Makin I. 2002. A high-resolution data set of surface climate over global land areas. Climate Researches, 21.
25- Reilly J., Tubiello F., McCarl B., Abler D., Darwin R., Fuglie K., Hollinger S., Izaurralde, C., Jagtap S., Jones J., Mearns L., Ojima D., Paul E., Paustian K., Riha S., Rosenberg N., and Rosenzweig C. 2003. Agriculture and climate change: new results. Climatic Change, 57: 43–69.
26- Rosenzweig C., Elliott J., Deryng D., Ruane A.C., Müller C., Arneth A., Boote K.J., Folberth C., Glotter M., Khabarov N., Neumann K., Pionteke F., Pugh T.A.M., Schmid E., Stehfest E., Yang H., and Jones J.W. 2013. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceeding of the National Academy of Science of the United States of America, 111(9):3268–3273.
27- Ruane A.C., Goldberg R., and Chryssanthacopoulos J. 2015. Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology, 200: 233-248.
28- Salehnia N., Alizadeh A., Sanaeinejad H., Bannayan M., Zarrin A., and Hoogenboom G. 2017. Estimation of meteorological drought indices based on AgMERRA precipitation data and station-observed precipitation data. Journal of Arid Land.
29- Schneider U., Becker A., Finger P., Meyer-Christoffer A., Rudolf, B., and Ziese M. 2011. GPCC Full Data Reanalysis Version 6.0 at 0.5◦: Monthly LandSurface Precipitation from Rain-Gauges built on GTS-based and Historic Data.
30- Shcherbakov M.V., Brebels A., Shcherbakova N. L., Tyukov A. P., Janovsky T.A., and Kamaev V.A. 2013. A Survey of Forecast Error Measures. World Applied Sciences Journal, 24:171-176.
31- Steward P.R., Andrew J.D., Christian T., Cameron M.P., Lindsay C.S., Maxwell K., and Gorm E.S. 2018. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: A meta-regression of yields. Agriculture, Ecosystem and environment, 251:195-202.
32- Tardivo G., and Berti A. 2012. A Dynamic Method for Gap Filling in Daily Temperature Datasets. Journal of Applied Meteorology and Climatology, 51:1079–1086.
33- UNEP. 2009. Afghanistan National Capacity Needs Self-Assessment for Global Environmental Management (NCSA) and National Adaptation Programme of Action for Climate Change (NAPA), 128 pp. Available at: http://www.unep.org/dgef/Portals/43/publications/Afghan_NCSA_and_NAPA_2009.pdf.
34- Wallach D., Makowski D., and Jones J.W. 2007. Working with dynamic crop models. Elsevier. In Weedon G. P., Gomes S., Balsamo G., Best M. J., Bellouin N., and Viterbo P. 2012. README file for the “WFDEI” dataset. Version: September 18th, 2013, Available at: www.eu-watch.org/data availability.
35- Wallach D., Makowski D., and Jones J.W. 2006. Working with dynamic crop models: Evaluations, analysis, parameterization and applications (First edition). Elsevier Science.
36- Wechsung F., Childers K., Frieler K., and Hoffman P. 2015. Forecasting Moroccan Wheat Yields using Two Statistical Models, American Geophysical Union, Fall Meeting 2015, abstract #A21F-0210.
37- Wilby R.L., Charles S., Zorita E., Timbal B., Whetton P., and Mearns L. 2004. Guidelines for use of Climate Scenarios Developed from Statistical Downscaling Methods. IPCC, IPCC Supporting Material, available from the DDC of IPPC TGCIA.
38- Willmott C.J. 1981. On the validation of models, Physical Geography, 2(2):184–194.
39- Willmott C.J., Ackleson S.G., Davis R.E., Feddema J.J., Klink K.M., Legates D.R., O'Donnell J., Rowe C.M. 1985. Statistics for the evaluation and comparison of models, Journal of Geophysics Researches, 90:8995-9005.
40- Willmott C.J., and Matsuura K. 1995. Smart interpolation of annually averaged air temperature in the United States. Journal of Applied Meteorology, 34(12):2577–2586.
41- Yatagai A., Arakawa O., Kamiguchi K., Kawamoto H., Nodzu M., and Hamada A. 2009. A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Scientific Online Letters on the Atmosphere, 5:137–140.
42- Yatagai A., Kamiguchi K., Arakawa O., Hamada A., Yasutomi N., and Kitoh A. 2012. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of American Meteorology Society, 93:1401–1415.
43- Zare H., Fallah M.H., Asadi A., Mojab A., and Bannayan M. 2016. Assessment of DSSAT and WOFOST sensitivity to temperature derived from AgMERRA. International Crop Modelling Symposium: 434-435.
CAPTCHA Image