دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی

2 دانشگاه بیرجند

چکیده

فرآیند ریزمقیاس نمایی آماری با هدف ارتقای شبیه‌سازی‌های مدل‌های GCMs و کاربست نتایج آن‌ها در مقیاس محلی انجام می‌شود. در این بین انتخاب متغیرهای ورودی ریزمقیاس نمایی اولین گام مهم این فرآیند می‌باشد. از آنجا که هدف اصلی ریزمقیاس نمایی بهبود شبیه‌سازی مدل‌های اقلیمی می‌باشد، بسیاری از مطالعات روش‌های متنوعی را برای انتخاب متغیرهای ورودیِ ریزمقیاس نمایی مورد ارزیابی قرار داده‌اند.این مطالعه درنظر دارد تا با استفاده از آزمون‌های مقایسه‌ای جامع، عملکرد شبکه عصبی را در فرآیند ریزمقیاس نمایی بارش روزانه تخت تأثیر چهار روش انتخاب متغیر PCA، CA، SRA و ParCA در اقلیم‌های متفاوت مورد ارزیابی قرار دهد. بدین منظور در ابتدا داده‌های مشاهداتی 30 ساله مربوط به ایستگاه‌های بیرجند (اقلیم خشک- کویری) و اردبیل (اقلیم سرد- نیمه‌خشک)، حدفاصل سال‌های 2004-1977 گرداوری شد. به‌منظور شبیه‌سازی رفتار مؤلفه‌های اقلیمی متأثر از پدیده تغییر اقلیم از خروجی مدل CanESM2 استفاده شد. بدین ترتیب داده‌های بزرگ مقیاس مدل CanESM2 برای هر دو ایستگاه سینوپتیک به منزله متغیرهای ورودی و بارندگی مشاهداتی به عنوان متغیر خروجی درنظر گرفته شد. آزمون‌های مقایسه‌ای شامل شاخص‌های ارزیابی، مقایسه مشخصه‌های آماری، جدول Contingency Table Event جهت تشخیص سری روزهای تر و خشک و مقایسه نموداری توزیع آماری از جمله ابزارهای مورد استفاده در این مطالعه جهت ارزیابی عملکرد روش‌های مختلف انتخاب متغیر می‌باشد. نتایج مطالعه نشان داد که به طور کلی ریزمقیاس نمایی بارش روزانه در تمامی روش‌های انتخاب متغیر در ایستگاه بیرجند دارای عملکرد بهتری نسبت به ایستگاه اردبیل می‌باشد. همچنین نتایج آزمون‌های مختلف نشان داد که روش‌های انتخاب متغیر CA و ParCA در اقلیم‌های خشک و روش‌ SRA در اقلیم سرد-نیمه‌خشک از عملکرد بهتری برخوردار می‌باشد. بهترین مقادیرشاخص‌های RMSE، R و NSE برای ایستگاه بیرجند به ترتیب 2/1 میلی‌متر در روز، 55/0 و 25/0 و در ایستگاه اردبیل به ترتیب 75/1 میلی‌متر در روز، 14/0 و 013/0 بدست آمد.ارزیابی روش‌ها در تشخیص درست روزهای تر و خشک در بیرجند نشان داد که دقت روش‌های CA و ParCA به ترتیب 25 و 22 درصد می‌باشد. این بدان معنی است که روش CA توانسته است 25 روزهای تر را به درستی تر تشخیص دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Examination of Feature Selection Methods for Downscaling of Daily Precipitation in Two Different Climates

نویسندگان [English]

  • Javad ramezani moghadam 1
  • Mostafa Yaghoubzadeh 2
  • Ahmad Jafarzadeh 2

1 University of Mohaghegh Ardabili

2 University of Birjand

چکیده [English]

Introduction & Background: Assessment of climate change impacts on hydrology is relied on the information of climate changes in adequate scale. Due to outputs of GCMs (General Circulation Models) that are the most confident tools for simulating climate change impacts but are available in coarse resolution. Downscaling process which is classified to several methods such as transfer function, weather generator and weather typing is performed for improving of GCMs projection and using them in local scale. Meanwhile feature selection is the main essential step in downscaling with transfer function. Because the main goal of downscaling is the improvement of GCMs projections, several researches examined vary approaches for feature selection. This study aims to assess performance of downscaling daily precipitation under four different selection methods such as PCA, CA, SRA and ParCA using comprehensive comparison tests.
Materials and Methods: Measured daily rainfall for Ardebil (with cold semi-arid climate) and Birjand (arid climates) were collected for the period from 1977 to 2004. The CanESM2 (Canadian Earth System Model) outputs were used as GCM for simulating of climate change impacts on precipitation pattern. So of CanESM2 outputs (large scale predictors) and measured daily precipitation (local scale predictants) were considered as input and target for downscaling respectively. The Artificial Neural Network (ANN) which widely has been used in climate change researches was selected as downscaling method. Despite of the most of literature have used only efficiency criteria for distinguishing from different approaches in downscaling, this study reveals performance of feature selection methods based on either them or statistical tests. The comparison tests between measured and downscaled rainfall such as assessment criteria, statistics characteristics comparison, contingency table event for wet and dry series diagnostics and Violin plot were used as tools for skill assessment of feature selection approaches.
Results and Discussion: Results showed that although different methods of predictor selection had includes various subsets, predictors such as relative humidity at surface and zonal velocity component at 500-hPa pressure levels in Birjand and mean temperature at 2m, mean sea level pressure and rotation of the air in Ardebil are the most descriptive features which have more relationship with measured daily precipitation. The efficiency criteria of comparing measured and downscaled precipitation indicated that CA method is superior to other in Birjand station and SRA’s results were better than those of other in Ardebil station. Value of RMSE, R and NSE was achieved 1.2 mm/day, 0.55 and 0.25 in Birjand and 1.75 mm/day, 0.14 and 0.013 in Ardebil respectively. The examination of measured and downscaled statistical characteristics reveals that CA has the better influence on downscaling than those of others in Birjand station. In this comparative test most of downscaled statistical components such as mean, median and skewness under CA have more similarity to measured values. But in Ardebil, with cold and arid climate, performance of SRA to downscale was the same as performance of CA to it. Also both SRA and CA were better than ParCA. The skill assessment of different methods to fit measured and downscaled variability by violin plot showed that generally ParCA outperformed other method in Birjand station. The comparison of violin plots, in Ardebil, revealed that no one of predictor selection methods has acceptable accuracy for fitting measured variability. Outcomes of contingency table event showed although all feature selection methods have not remarkable capability for distinguishing from the measured wet and dry series in Ardebil station, performance of ParCA and SRA were acceptable in Birjand station. The values of CSI for ParCA and SRA were calculated 0.25 and 0.22 in Birjand and it shows that more of 20 percent of ParCA and SRA’s diagnostics was correct.
Conclusions: By assessing of results, it can be inferred that generally downscaling of daily rainfall in Birjand station is outperforming Ardebil. In other expression daily downscaling of precipitation in arid climate has better results than cold and arid climate. Also different tests have various results about feature selection methods. In Ardebil, SRA in efficiency criteria test and both SRA and CA in statistics characteristics have better performance than others. But in this region no methods have remarkable performance in violin and dry and wet tests.

کلیدواژه‌ها [English]

  • CanESM2
  • Partial Correlation
  • PCA
  • Reduction Dimensions
  • Wet and Dry Spell
1. Bengio Y. and LeCun Y., 2007. Scaling learning algorithms towards AI1-41. In Bottou L., Chapelle O., DeCoste D., Weston J. Large-scale kernel machines. MIT Press.
2. Camici S., Palazzi E., Pier, A., Brocca L., Moramarco T., and Provenzale A. 2015. Comparison between dynamical and stochastic downscaling methods in central Italy. In EGU General Assembly Conference Abstracts, 10270.. 10270.
3. Chanda K., and Maity R. 2018. Global Climate Pattern Behind Hydrological Extremes in Central India. In Climate Change Impacts (pp. 71-89). Springer, Singapore.
4. Chen H., CY X., and Guo S.L. 2012. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrologicalmodels in the study of climate change impacts on runoff.Journal of hydrology, 434, 36-45.
5. Chen J., Brissette F.P., and LeconteR. 2011. Uncertainty of downscaling meth- od in quantifying the impact of climate change on hydrology. Journal of Hydrology.401:190–202.
6. Devak M., Dhanya C.T., and Gosain A.K. 2015. Dynamic coupling of support vector machine and K-nearest neighbour for downscaling daily rainfall. Journal of Hydrology, 525:286-301.
7. Draper N.R., Smith H., and Pownell E. 1966. Applied regression analysis. 3: 217-220. New York: Wiley.
8. Fisher R.A. 1958. Statistical Methods for Research Workers, 13th Ed., Hafner.
9. Fistikoglu O., and Okkan U. 2011. Statistical Downscaling of Monthly Precipitation Using NCEP / NCAR Reanalysis Data for Tahtali River Basin in Turkey, Journal of Hydrologic Engineering.16, 157–164.
10. Gaitan C. F., Hsieh W. W., and Cannon A. J. 2014. Comparison of statistically downscaled precipitation in terms of future climate indices and daily variability for southern Ontario and Quebec, Canada. Climate Dynamics, 43(12):3201–3217.
11. Hammami D., Lee T.S., Ouarda T.B. M.J., and Le J. 2012. Predictor selection for downscaling GCMs data with LASSO. Journal of Geophysical Research Atmospheres, 117(17):1–11.
12. Harpham C., and Wilby R.L. 2005. Multi-site downscaling of heavy daily precipitation occurrence and amounts. Journal of Hydrology, 312(1):235-255.
13. Hassan Z., Shamsudin S., and Harun S. 2014. Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temper- ature. Theoretical and Applied Climatology. 116:243–257.
14. Hessami M., Gachon P., Ouarda T., and St-Hilaire A. 2008. Automated regression-based statistical downscaling tool. Environmental Modelling & Software, 23:813–834.
15. Huth R. 1999. Statistical downscaling in central Europe: evaluation of methods and potential predictors. Climate Research, 13:91–1011. IPCC (2001) Climate change 2001: impacts, adaptation and vulner- ability. In: McCarthy JJ., Canziani oF, Leary NA., Dokken DJ., White KS (eds) Contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
16. IPCC (2001) Climate change 2001: impacts, adaptation and vulner- ability. In: McCarthy JJ., Canziani oF, Leary NA., Dokken DJ., White KS (eds) Contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
17. IPCC (2007) Summary for policymakers. Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–18
18. Jafarzadeh A., Pourreza-Bilondi M., Khashei-Siuki A., A. Aghakhani A., and Yaghoobzadeh M. 2017. Reliability estimation of rainwater catchment system using future GCMs output data (case study: Birjand City). In 10th World Congress On Water Resources And Environment (pp. 536–541).
19. Kaviani M., and MirRokni S.M. 2014. Application of principal component analysis to meteorological data in ANN input selection. Geophysics Journal of IRAN, 9(1):71-84.
20. Khan M.S., Coulibaly P., and Dibike Y. 2006. Uncertainty analysis of statistical downscaling methods. Journal of Hydrology, 319(1–4):357–382. https://doi.org/10.1016/j.jhydrol.2005.06.035.
21. Khashei-Suiki A., Shahidi A., Pourreza-Bilondi M., Amirabdizadeh M., and Jafarzadeh A. 2018. Performance Assessment of ANN and SVM for downscaling of daily rainfall in dry regions. Iranian journal of Soil and Water Research. (in Persian)
22.Krause P., Boyle D.P., and Bäse F. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5:89–97.
23. McCulloch W.S., and Pitts W. 1943. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115-133.
24. Meenu R., Rehana S., and Mujumdar P.P. 2013. Assessment of hydrologic impacts of climate change in Tunga-Bhadra river basin, India with HEC-HMS and SDSM. Hydrological Processes, 27(11):1572–1589.
25. Najafi M.R., Moradkhani H., and Wherry S.A. 2011. Statistical Downscaling of Precipitation Using Machine Learning with Optimal Predictor Selection. Journal of Hydrologic Engineering, 16(8): 650–664.
26. Nasseri M., and Zahraie B. 2013. Performance Assessment of Different Data Mining Methods in Statistical Downscaling of Daily Precipitation. Journal of Hydrology, 492, 1–14.
27. PervezM.S., HenebryG.M. 2014. Projections of the Ganges–Brahmaputra precipitation downscaled from GCMs predictors. Journal of Hydrology 517:120–134.
28. Raje D., Mujumdar P.P. 2011. A comparison of three methods for downscaling daily precipitation in the Punjab region. Hydrology Process, 25(23):3575–3589.
29. Rumelhart D.E., Hinton G.E., and Williams R.J. 1986. Learning representations by back-propagating errors. Nature, 323(6088):533-536.
30. Salathe E.P., Mote P.W., and Wiley M.W. 2007. Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the United States Pacific Northwest. International Journal of Climatology, 27(12):1611-1621.
31. Semenov M. 2002. LARS-WG A Stochastic Weather Generator for Use in Climate Impact Studies. In Version 3, ed. R. Research.
32. Vousoughi1 F., Dinpashoh Y., and Aalami M. 2010. Effect of Drought on Groundwater Level in the Past Two Decades (Case study: Ardebil Plain). Water and Soil Science, 21(4):165-179. (in Persian)
33. Wilby R.L., and Wigley T.M.L. 2000. Precipitation predictors for downscaling: observed and general circulation model relationships. International Journal of Climatology, 20(6):641-661.
34. Wilby R.L., Dawson C.W., and Barrow E.M. 2002. SDSM—a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2):145-157.
35. Wilks D.S., 1995. Statisistical Methods in the Atmospheric Sciences. Academic Press, San Diego, California
36. Wood A.W., Leung L.R., Sridhar V., and Lettenmaier D.P. 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change 62: 189–216.
37. Yang C. 2016. Performance comparison of three predictor selection methods for statistical downscaling of daily precipitation. Theoretical and Applied Climatology. 131(1-2):43-54.
CAPTCHA Image