دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 ولیعصر (عج) رفسنجان

2 استاد گروه علوم خاک دانشکده کشاورزی دانشگاه ولی عصر رفسنجان

3 ولی عصر (عج) رفسنجان

چکیده

ماشین های بردار پشتیبان، ابزاری امیدبخش برای روش های مبتنی بر آموزش می باشند که برای مسایل تشخیص الگو بر اساس کمینه کردن احتمال بروز اشتباه، ایجاد شده اند. در این پژوهش، کارآیی روش ماشین های بردار پشتیبان در مدل سازی برآورد پایداری خاکدانه ها (از طریق محاسبة میانگین هندسی قطر خاکدانهها، GMD) با رگرسیون خطی چند متغیره مقایسه شد. برای این منظور از داده های زودیافت مؤثر بر پایداری خاکدانه ها شامل برخی ویژگیهای توپوگرافیکی، پوشش گیاهی و خاک استفاده گردید. برای بررسی کارآیی مدل ها نیز از برخی شاخص‌‌های آماری نظیر ضریب همبستگی (r)، میانگین مربعات خطا (MSE) و درصد خطا (ERROR%) بین مقادیر اندازهگیری شده و برآورد شده استفاده شد. نتایج نشان داد که کارایی مدل های مبتنی بر ماشین های بردار پشتیبان در تخمین پایداری خاکدانه ها، بسیار بیشتر از روش رگرسیون خطی چند متغیرة مرسوم بود. مقادیر MSE و r مدل ماشین های بردار پشتیبان طراحی‌‌شده برای برآورد پایداری خاکدانه ها به‎ترتیب، برابر 005/0 و 86/0 بودند. درصد خطا برای تخمین پایداری خاکدانه ها با استفاده از مدل ماشین های بردار پشتیبان برابر 7/10 درصد بود درحالی که مقدار درصد خطا برای مدل رگرسیونی برازش داده شده، حدود 7/15 درصد بود. بنابراین به نظر می رسد که بتوان از ماشین های بردار پشتیبان برای برآورد برخی ویژگی های فیزیکی خاک (نظیر میانگین هندسی قطر خاکدانهها) در منطقه‌ی مورد بررسی استفاده نمود.

کلیدواژه‌ها

عنوان مقاله [English]

Modeling of Soil Aggregate Stability using Support Vector Machines and Multiple Linear Regression

نویسندگان [English]

  • Ali Asghar Besalatpour 1
  • Hossein Shirani 2
  • Isa Esfandiarpour Borujeni 3

1 Vali-e-Asr University of Rafsanjan

2

3

چکیده [English]

Introduction: Soil aggregate stability is a key factor in soil resistivity to mechanical stresses, including the impacts of rainfall and surface runoff, and thus to water erosion (Canasveras et al., 2010). Various indicators have been proposed to characterize and quantify soil aggregate stability, for example percentage of water-stable aggregates (WSA), mean weight diameter (MWD), geometric mean diameter (GMD) of aggregates, and water-dispersible clay (WDC) content (Calero et al., 2008). Unfortunately, the experimental methods available to determine these indicators are laborious, time-consuming and difficult to standardize (Canasveras et al., 2010). Therefore, it would be advantageous if aggregate stability could be predicted indirectly from more easily available data (Besalatpour et al., 2014). The main objective of this study is to investigate the potential use of support vector machines (SVMs) method for estimating soil aggregate stability (as quantified by GMD) as compared to multiple linear regression approach.
Materials and Methods: The study area was part of the Bazoft watershed (31° 37′ to 32° 39′ N and 49° 34′ to 50° 32′ E), which is located in the Northern part of the Karun river basin in central Iran. A total of 160 soil samples were collected from the top 5 cm of soil surface. Some easily available characteristics including topographic, vegetation, and soil properties were used as inputs. Soil organic matter (SOM) content was determined by the Walkley-Black method (Nelson & Sommers, 1986). Particle size distribution in the soil samples (clay, silt, sand, fine sand, and very fine sand) were measured using the procedure described by Gee & Bauder (1986) and calcium carbonate equivalent (CCE) content was determined by the back-titration method (Nelson, 1982). The modified Kemper & Rosenau (1986) method was used to determine wet-aggregate stability (GMD). The topographic attributes of elevation, slope, and aspect were characterized using a 20-m by 20-m digital elevation model (DEM). The data set was divided into two subsets of training and testing. The training subset was randomly chosen from 70% of the total set of the data and the remaining samples (30% of the data) were used as the testing set. The correlation coefficient (r), mean square error (MSE), and error percentage (ERROR%) between the measured and the predicted GMD values were used to evaluate the performance of the models.
Results and Discussion: The description statistics showed that there was little variability in the sample distributions of the variables used in this study to develop the GMD prediction models, indicating that their values were all normally distributed. The constructed SVM model had better performance in predicting GMD compared to the traditional multiple linear regression model. The obtained MSE and r values for the developed SVM model for soil aggregate stability prediction were 0.005 and 0.86, respectively. The obtained ERROR% value for soil aggregate stability prediction using the SVM model was 10.7% while it was 15.7% for the regression model. The scatter plot figures also showed that the SVM model was more accurate in GMD estimation than the MLR model, since the predicted GMD values were closer in agreement with the measured values for most of the samples. The worse performance of the MLR model might be due to the larger amount of data that is required for developing a sustainable regression model compared to intelligent systems. Furthermore, only the linear effects of the predictors on the dependent variable can be extracted by linear models while in many cases the effects may not be linear in nature. Meanwhile, the SVM model is suitable for modelling nonlinear relationships and its major advantage is that the method can be developed without knowing the exact form of the analytical function on which the model should be built. All these indicate that the SVM approach would be a better choice for predicting soil aggregate stability.
Conclusion: The pixel-scale soil aggregate stability predicted that using the developed SVM and MLR models demonstrates the usefulness of incorporating topographic and vegetation information along with the soil properties as predictors. However, the SVM model achieved more accuracy in predicting soil aggregate stability compared to the MLR model. Therefore, it appears that support vector machines can be used for prediction of some soil physical properties such as geometric mean diameter of soil aggregates in the study area. Furthermore, despite the high predictive accuracy of the SVM method compared to the MLR technique which was confirmed by the obtained results in the current study, the advantages of the SVM method such as its intrinsic effectiveness with respect to traditional prediction methods, less effort in setting up the control parameters for architecture design, the possibility of solving the learning problem according to constrained quadratic programming methods, etc., should motivate soil scientists to work on it further in the future.

کلیدواژه‌ها [English]

  • Geometric mean diameter (GMD)
  • Soil structure
  • Support vector machines (SVMs)
  • Soil physical properties
1- Amezketa E. 1999. Soil aggregate stability: A review. Journal of Sustainable Agriculter, 14: 83-151.
2- Andesodun J.K., Mbagwu J.S.C., and Oti N. 2005. Distribution of carbon, nitrogen and phosphorus in water-stable aggregates of an organic waste amended Ultisol in southern Nigeria. Bioresoure Technology, 96: 509-516.
3- Besalatpour A., Hajabbasi M.A., Ayoubi S., Afyuni M., Jalalian A., and Schulin R. 2012. Soil shear strength prediction using intelligent systems: artificial neural networks and adaptive neuro-fuzzy inference system. Journal of Soil Science and Plant Nutrition, 58: 149-160.
4- Besalatpour A.A., Ayoubi S., Hajabbasi M.A., Gharipour A., and Yousefian Jazi A. 2014. Feature selection using parallel genetic algorithm for the prediction of geometric mean diameter of soil aggregates by machine learning methods. Arid Land Researche and Management, 28:383-394.
5- Calero N., Barron V., and Torrent J. 2008. Water dispersible clay in calcareous soils of southwestern Spain. Catena, 74: 22-30.
6- Canasveras J.C., Barron V., Del Campillo M.C., Torrent J., and Gomez J.A. 2010. Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma, 158: 78-84.
7- Canton Y., Sole-Benet A., Asensio C., Chamizo S., and Puigdefabregas J. 2009. Aggregate stability in range sandy loam soils: relationships with runoff and erosion. Catena, 77: 192-199.
8- Chenu C., Le Bissonnais Y., and Arrouays D. 2000. Organic matter influence on clay wettability and soil aggregate stability. Soil Science Society of American Journal, 64:1479-1486.
9- Dexter A.R., and Kroesbergen B. 1985. Methodology for determination of tensile strength of soil aggregates. Journal of Agricultural Engineering Research, 31: 139-147.
10- Gee G.W., and Bauder J.W. 1986. Particle size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis: Part 1., Agronomy Handbook No 9., American Society of Agronomy and Soil Science Society of America, Madison, WI, pp. 383-411.
11- Kemper W.D., and Rosenau K. 1986. Size distribution of aggregates. In: Klute, A. (Ed.), Methods of Soil Analysis: Part 1: Physical and Mineralogical Methods, American Society of Agronomy, Madison, WI, pp. 425-442.
12- Khalilmoghadam B., Afyuni M., Abbaspour K.C., Jalalian A., Dehghani A.A., and Schulin R. 2009. Estimation of surface shear strength in Zagros region of Iran-A comparison of artificial neural networks and multiple-linear regression models. Geoderma, 153: 29-36.
13- Lamorski K., Pachepsky Y., Slawinski C., and Walczak R.T. 2008. Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Science Society of American Journal, 72: 1243-1247.
14- Lamorski K., Pastuszka T., Krzyszczak J., Slawinski C., and Witkowska-Walczak B. 2013. Soil water dynamic modeling using the physical and support vector machine methods. Vadose Zone Journal, 12 (4):
15- Li H., Liang Y., and Xu Q. 2009. Support vector machines and its applications in chemistry. Chemometrics Intelligent Labratory Systems, 95: 188-198.
16- Liao K., Xu S., Wu J, Zhu Q., and An L. 2014. Using support vector machines to predict cation exchange capacity of different soil horizons in Qingdao City, China. Journal of Plant Nutrition and Soil Science, 177 (5): 775-782.
17- Nelson D.W. and Sommers L.E. 1982. Total carbon, organic carbon, and organic matter. In: Page, A. L. (Ed.), Methods of Soil Analysis, American Society of Agronomy, Madison, Wis, pp. 539-579.
18- Nelson R.E. 1982. Carbonate and gypsum. In: Page, A.L. (Ed.), Methods of Soil Analysis: Part I: Agronomy Handbook No 9, American Society of Agronomy and Soil Science Society of America, Madison, WI, pp. 181-197.
19- Six J., Paputian K., Elliot E.T., and Combrink C. 2001. Soil structure and organic matter. I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of American Journal, 64: 681-689.
20- Sobhani J., Najimi M., Pourkhorshidi A.R., and Parhizkar T. 2010. Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models. Journal of Construction and Building Materials, 24: 709-718.
21- Tisdall J. M., and Oades J.M. 1982. Organic matter and water-stable aggregates in soils, Soil Sci., 33: 141-163.
22- Twarakavi N.K.C., Simunek J., and Schaap M.G. 2009. Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines. Soil Science Society of American Journal, 73: 1443-1452.
23- Van Bavel C.H.M. 1950. Mean-weight diameter of soil aggregates as a statistical index of aggregation. Proceeding of Soil Science Society of American, 14: 20-23.
24- Vapnik V. 1995. The Nature of Statistical Learning Theory, Springer-Verlag, New York.
25- Vapnik V. 1998. Statistical Learning Theory, Wiley, New York.
26- Wang L. 2005. Support Vector Machines: Theory and Applications. Springer-Verlag, New York.
27- Wang W.C., Chau K.W, Cheng C.T., and Qiu L. 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374: 294-306.
28- Yilmaz I., and Yuksek G. 2009. Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. International Journal of Rock Mechanics and Mining Sciences, 46: 803-810.
CAPTCHA Image