دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه شهید چمران اهواز

2 دانشگاه علوم پزشکی جندی شاپور

چکیده

افزایش غلظت یون نیترات در محلول خاک و سپس آبشویی آن سبب افزایش غلظت نیترات در سفره های آب زیرزمینی می شود. هدف اصلی پژوهش بررسی کاربرد نانوذرات آهن صفر ظرفیتی پایدار شده با کربوکسی متیل سلولز برای حذف نیترات از خاک شنی بود. نانوذرات در محیط آزمایشگاه ساخته شد و مشخصات آنها با استفاده از میکروسکوپ الکترونی روبشی (SEM)، پراش پرتو ایکس (XRD) و طیف سنجی مادون قرمز (FTIR) مورد تجزیه و تحلیل قرار گرفت. آزمایش ها در یک ستون شنی به طول 40 سانتی متر و قطر داخلی 5/2 سانتی متر تحت تأثیر غلظت نانوذرات آهن (1، 2 و 3 گرم بر لیتر) و غلظت نیترات(150، 250 و 350 میلی گرم بر لیتر) انجام شد. سرعت منفذی در ستون شنی 16/0 میلی متر بر ثانیه بود. مقادیر نیترات، نیتریت و آمونیوم در زه آب خروجی اندازه گیری شد. نتایج نشان داد کاهش غلظت نیترات و افزایش غلظت نانوذرات، درصد احیاء نیترات را افزایش داد. بیشترین درصد احیاء (56/82) در غلظت 150 میلی گرم بر لیتر نیترات و 3 گرم بر لیتر نانوذرات و کمترین درصد احیاء (94/63) در غلظت 150 میلی گرم بر لیتر نیترات و 1 گرم بر لیتر نانوذرات بدست آمد. محصول عمده احیاء نیترات، گاز نیتروژن بود و آمونیوم و نیتریت نیز به میزان کمتر از 2 درصد تولید شد. کربوکسی متیل سلولز از هم آوری نانوذرات جلوگیری کرده و واکنش پذیری و انتقال نانوذرات را در محیط متخلخل افزایش داد. نانوذرات آهن صفر ظرفیتی دارای پتانسیل بالایی برای احیاء نیترات در حلول های آبی و محیط های متخلخل هستند و می تواند به عنوان روشی مؤثر برای حذف نیترات استفاده شود.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Stabilized Zero-Valent Iron Nanoparticles on Nitrate Removal from Sandy Soil

نویسندگان [English]

  • F. Nooralivand 1
  • A. Farrokhian Firouzi 1
  • A. Kiasat 1
  • M. Chorom 1
  • A. Akbar Babaei 2

1 Shahid Chamran University of Ahvaz

2 Ahvaz Jundishapur University of Medical Sciences

چکیده [English]

Introduction: During the recent decades, the use of N fertilizers has undeniable development regardless of their effects on the soil and environment. Increasing nitrate ion concentration in soil solution and then, leaching it into groundwater causes increase nitrate concentration in the water and raise the risk suffering from the people to some diseases. World health organization recommended maximum concentration level for nitrate and nitrite in the drinking water 50 and 3 mg/l, respectively. There are different technologies for the removal of nitrate ions from aqueous solution. The conventional methods are ion exchange, biological denitrification, reverse osmosis and chemical reduction. Using nanoscale Fe0 particles compared to other methods of nitrate omission was preferred because of; its high surface area, more reactive, lower cost and higher efficiency. More studies on the reduction of nitrate by zero-valent iron nanoparticles have been in aqueous solutions or in the soil in batch scale. Nanoparticles surface modified with poly-electrolytes, surfactants and polymers cause colloidal stability of the particles against the forces of attraction between particles and increases nanoparticle transport in porous media. The objectives of this study were to synthesize carboxymethyl cellulose stabilized zero-valent iron nanoparticles and consideration of their application for nitrate removal from sandy soil.
Materials and Methods: The nanoparticles were synthesized in a lab using borohydride reduction method and their morphological characteristics were examined via scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier Transmission Infrared Spectroscopy (FTIR). Experiments were conducted on packed sand column (40 cm length and 2.5 cm inner diameter) under conditions of different nanoparticle concentration (1, 2, and 3 g1-1)and high initial NO3- concentration (150, 250, and 350 mgl-1). Homogeneous soil column was filled with the wet packed method. CMC-NZVI suspensions of nanoparticle in aqueous solution (0.01 M CaCl2 and 0.001MKCl) were pumped into the sand column during the injection of nitrate solution. During transport experiment, the flask containing CMC-ZVIN suspension was sonicated using a 50 KH ultrasonicator (DSA100-SK2) to prevent particle agglomeration and ensure homogeneity of the suspensions. In these experiments pore water velocity was 0.16 mms-1. Nitrate and Nitrite concentrations in the samples were measured using UV-VIS.HACH DR 5000 spectrophotometer at wavelengths 220 and 530nm, respectively, and ammonium concentration was measured by Kjeldahl method. All chemicals used in this research were of chemical grades and all solutions were prepared using deionized water (DI).
Results and Discussion: Effect of nanoparticles and nitrate concentration on nitrate reduction by stabilized nanoparticle in sand column was investigated. The Results of study indicating at the first of reaction in both cases rate and amount of nitrate reduction was increased gradually. But over time, due to saturation capacity of nanoparticles at higher concentrations of nitrate, reduction speed and amount of reduction was constant approximately. The result showed that increasing dosage of nanoparticles and decreasing the influent nitrate concentration would increase percentage of nitrate reduction. Maximum percentage of reduction (82.56%) were observed at nanoparticles concentration=3 gl-1 and high initial nitrate concentration=150 mgl-1 and minimum percentage of reduction (63.94%) were observed at nanoparticles concentration=1 gl-1 and high initial nitrate concentration=150 mgl-1. After the end of experiment time, amount of observed ammonium and nitrite was a few in the drainage water of sand column. During the reaction nitrate reduction by nano-particles, H + was used and OH- was produced therefore through reaction, environment pH increased continuously. In conditions of alkaline, ammonium release in the form of N2. Therefore reduction of the amount of ammonium may due to high pH of environment reaction or fixation of ammonium in the surface colloidal of particles in porous medium. Nitrite is an intermediate product and due to the reaction conditions can be converted to ammonia or nitrogen gas. The final product of reduction would be nitrogen gas, and produced nitrite and ammonium was less than 2%.
Conclusion: The results indicate that, in all experiments (effect of nanoparticle and nitrate concentration on nitrate reduction), amount of observed ammonium and nitrite was a few in the drainage water of sand column and most of the nitrate converted to nitrogen gas. Since maximum concentration level of ammonium in drinking water is 50 times less than nitrate concentration, nitrogen gas is an ideal product in water treatment process. Carboxymethyl cellulose prevents agglomeration ZVI nanoparticles and enhanced the reactivity and transport of nanoparticle in the porous media. The findings of this research demonstrated that carboxymethyl cellulose-stabilized zero-valent iron nanoparticles have a high potential for reduction of nitrate in aqueous solutions and porous media. Therefore, it can be used as an effective method for removing nitrate from water.

کلیدواژه‌ها [English]

  • Carboxymethyl Celloluse
  • Nitrate reduction
  • Sand Column
  • Zero-Valent Iron Nanoparticle
Chen S.S., Hsu H.D., and Li C.W. 2004. A new method to produce nanoscale iron for nitrate removal. Journal of Nanoparticle Research, 6: 639–647.
2- Chen Y., and Li F. 2010. Kinetic study on removal of copper)II( using goethite and hematite nano- photocatalysts. Journal of Coloid and Interface Science, 347: 277–281.
3- Choe S., Liljestrand H.M., and Khim J. 2004. Nitrate reduction by zero-valent iron under different pH regimes. Applied Geochemistry, 19 (3): 335–342.
4- Choe S., Hwang K.Y., Chang Y.Y., and Khim J. 2001. The rapid denitrification of nitrate-polluted water by synthesized nanoscale iron particles. Korian Society of Environmental Engineers, 6(1): 1-6.
5- Cirtiu C.M., Raychoudhury T., Ghoshal S., and Moores A. 2011. Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post-grafted with common polymers. Colloids and Surfaces A: Physicochem. Engineers. Aspects, 390: 95-104.
6- Clifford D.A., and Liu X. 1993. Biological denitrification of spent regenerant brine using a sequencing batch reactor, Water Research, 27: 1477-1484.
7- Fresenius W., Quentin K. E., and Schneider W. 2002. Water Analysis. Translator: Taghvaipur A. p: 47-49 and 55-57.
8- He F., and Zhao D. 2005. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science and Technology, 39: 3314–3320.
9- He F., and Zhao D. 2007. Manipulating the size and dispersibility of zero-valent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science and Technology, 41:6216–6221.
10- Hosseini S.M., Ataie-Ashtiani B., and Kholghi M. 2011. Nitrate reduction by nano-Fe/Cu particles in packed column. Desalination, 276(1-3): 214–221.
11- Hosseini M. 2012. Quantification the Effect of magnetite nanoparticles on stabilization, transfer and bioavailable of copper in soil. Master Thesis. Shahid Chamran University of Ahvaz.
12- Huang Y. H., Zhang T. C., Shea P. J., and Comfort S. D .2003. Effects of oxide coating and selected cations on nitrate reduction by iron metal. Journal of Environmental Quality, 32(4): 1306-1315.
13- Jamali H., and Emamjomeh M. 2004. Investigate and determine the amount of nitrate in sources of drinking water in Qazvin. 6th National Conference of Environmental Health. 22-24 October 2004.
14- Kanel S.R.,Greneche J.M., and Choi H. 2006. Arsenic(V) removal komgroundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science and Technology, 40 (6): 2045–2050.
15- Kanel S.R., Manning B., Charlet L., and Choi H. 2005. Removal of arsenic (III) from groundwater by nanoscale zerovalent iron. Environmental Science and Technology, 39: 1291–1298.
16- Kanel S.R., Nepal D., Manning B., and Choi H. 2007. Transport of surfacemodified iron nanoparticle in porous media and application to arsenic (III) remediation. Journal of Nanoparticle Research,9 (5):725–735.
17- Kesseru P., Kiss I., Bihari Z., and Polyak B. 2003. Biological denitrification in a continuous-flow pilot bioreactor containing immobilized Pseudomonas butanovora cells. Biores Technology, 87: 75-80.
18- Kim J., and Benjamin M.M. 2004. Modeling a novel ion exchange process for arsenic and nitrate removal. Water Research, 38: 2053–2062.
19- Leupin O.X., and Hug S.J. 2005. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Research, 39 (9): 1729–1740.
20- Li Z.H., Jones H.R., Bowman R.S., and Helferich R. 1999. Enhanced reduction of chromate and PCE by palletized surfactant-modified zeolite/zerovalent iron. Environmental Science and Technology, 33 (23): 4326–4330.
21- Lin Y.H., Tseng H.H., Wey M.Y., and Lin M.D. 2010. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Science of the Total Environment, 408: 2260–2267.
22- Lin C. J., Lo S.L., and Liou Y.H. 2005 . Degradation of aqueous carbon tetrachloride by nanoscale zerovalent copper on a cation resin. Chemosphere, 59(9): 1299-1307.
23- Liou Y. H., Lo S.L., Lin C.J., and Kuan W.H. 2007. Size effect in reactivity of copper nanoparticles to carbon tetrachloride degradation. Water Research, 41(8): 1705-1712.
24- Nuhogl A., Pekdemir T., Yildiz E., Keskinler B., and Akay G. 2002. Drinking water denitrification by a membrane bio-reactor, Water Research, 36: 1155-1166.
25- Ozturk N., and Bektas T.E. 2004. Nitrate removal from aqueous solution by adsorption onto various materials. Journal Hazard Mater, 112(1-2): 155- 162.
26- Page A.L., Miller R.H. and Keeney D.R. 1982. Methods of soil Analysis. part:2, chemical and Microbiological Properties Second Edition. America Society of Agronomy, Soil Scinety of America Publisher . Madison, Wisconsin, USA.
27- Peel J.W., Reddy K.J., Sullivan B.P., and Bowen JM. 2003. Electrocatalytic reduction of nitrate in water. Water Research, 37: 2512–2519.
28- Petosa A.R., Jaisi D.P., Quevedo I.R., Elimelech M., and Tufenkji N. 2010. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environmental Science and Technology, 44: 6532-6549.
29- Phenrat T., Saleh N., Sirk K., Tilton R.D., and Lowry G.V. 2007. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science and Technology, 41: 284–290.
30- Phenrat T., Saleh N., Sirk K., Tilton R.D., and Lowry G.V. 2008. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 10 (5): 795–814.
31- Pronkin S.N., Simonov P.A., Zaikovskii V.I., and Savinova E.R. 2007. Model Pd-based bimetallic supported catalysts for nitrate electroreduction. Journal of Molecular Catalysis A: Chemical, 265: 141–147.
32- Rautenbach R., Kopp W., Hellekes R., Teter R,. and Van Opbergen G.1986. Separation of nitrate from well water by membrane processes (reverse osmosis/elecrodialysis reversal). Aqua, 5:279–282.
33- Saad R., Belkacemi K. and Hamoudi S. 2007. Adsorption of phosphate and nitrate anions on ammonium-functionalized MCM-48: Effects of experimental conditions. Journal of Colloid and Interface Science, 311: 375 381.
34- Schrick B., Hydutsky B.W., Blough J.L., and Mallouk T.E. 2004. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16 (11): 2187–2193.
35- Sun y. P., Li X.Q., Zhang W.X., and Wang H.P. 2006. Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120: 47-56.
36- Wang Q., Qian H., Yang Y., Zhang Z., Naman C. and Xu X. 2010. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. Journal of Contaminant Hydrology, 114: 35–42.
37- Xiong Z., Zhao D., and Pan G. 2008. Rapid and controlled transformation of nitrate in water and brine by stabilized iron nanoparticles. Journal Nanoparticles research, 5: 9433-9.
38-Yang G.C.C., Tu H. C., and Hung C. H. 2007. Stability of nanoiron slurries and their transport in the subsurface environment. Separation and Purification Technology, 58 (1): 166–172.
39- Zhang J., Haoa Z., Zhang Z., Yang Y. and Xu X. 2010. Kinetics of nitrate reductive denitrification by nanoscale zero-valent iron. Process Safety and Environmental Protection, 88(6): 439–445.
40- Zhang X., Lin S., Chen Z., Megharaj M., and Naidu R. 2011. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2D from aqueous solution: Reactivity, characterization and mechanism. Water Research, 45: 3481-3488.
CAPTCHA Image