دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد خوراسگان

2 دانشگاه صنعتی اصفهان

3 /

چکیده

گیاهان پیش کاشت می توانند نقش مهمی در حاصلخیزی خاک و چرخه عناصر کم مصرف در خاک داشته باشند. علاوه بر نقش آن ها بر افزایش غلظت عناصر کم مصرف در محلول خاک باید به نقش نوع و مقدار ترشحات ریشه ای در حضور مواد آلی متفاوت در ریزوسفر ریشه نیز توجه کرد. به منظور بررسی اثر پیش کاشت به همراه اثر ریزوسفر گندم (رقم بک کراس) بر شکل های شیمیایی مس در خاک، آزمایش مزرعه ای با طرح اسپلیت پلات در قالب بلوک های کامل تصادفی با پنج تیمار شامل (سورگوم، شبدر، آفتابگردان، گلرنگ و شاهد) در خاک تحت کشت گندم انجام گردید. پس از برداشت پیش کاشت ها، گندم کشت شد. همزمان با برداشت گندم، نمونه های خاک (ریزوسفر و توده گندم) نیز برداشت شدند. نتایج نشان داد که پیش کاشت ها سبب افزایش معنی دار غلظت کربن آلی محلول و مس قابل استخراج با DTPA شدند. تغییرات مذکور در تیمار شبدر بیشتر از سایر تیمارها و در ریزوسفر گندم بیشتر از توده خاک بود. مس کربناتی و باقیمانده تحت تأثیر پیش کاشت شبدر کاهش یافت. در حالی که اختلاف معنی دار بین ریزوسفر و توده خاک گندم مشاهده نشد. پیش کاشت ها (به جزء شبدر) مس پیوند شده با اکسیدهای آهن و منگنز را افزایش دادند که در توده خاک بیشتر از ریزوسفر گندم بود. مس پیوند شده با مواد آلی در هر دو ناحیه توده و ریزوسفر گندم افزایش معنی دار یافت. پیش کاشت ها جذب مس در گندم را افزایش معنی دار دادند. شکل مس پیوند شده با مواد آلی با جذب مس در گندم همبستگی مثبت نشان داد.

کلیدواژه‌ها

عنوان مقاله [English]

The Effect of Preceding Crops on the Chemical Fractions of Copper (Cu) in the Rhizosphere and the Bulk Soil and its Relationship with Copper Uptake by Wheat

نویسندگان [English]

  • shahrzad kabirinejad 1
  • mahmoud kalbasi 2
  • amir khoshgoftar manesh 3
  • M. Hoodaji 1
  • Majid Afyuni 2

1 Islamic Azad University, Branch of Khorasgan

2 Isfahan University of Technology

3

چکیده [English]

Introduction: Preceding crops as a source of organic matter are an important source of micronutrient and can play an important role in the soil fertility and the micronutrients cycle of soil. In addition to the role of the organic matter in increasing the concentration of micronutrients in soil solution, attention also should be paid to the role of the kind and the quantity of the root’s exudates that are released in response to the incorporation of different plant residues in the rhizosphere. Present research was conducted with the objective of studying the effect of the kind of preceding crops: Trifolium (Trifolium pretense L), Sofflower (Carthamus tinectirus L), Sorghum (Sorghum bicolor L), Sunflower (Heliantus annus L) and control (fallow) on the chemical forms of copper in the wheat rhizosphere and the bulk soil and Cu uptake by wheat and also investigating the correlation between the fractions of Cu in soil and Cu uptake in wheat.
Materials and Methods: The present research was conducted as split plot in a Randomized Complete Block design (RCBD) with 3 replications and 5 treatments, in field conditions. In the beginning, the preceding crops were cultivated in the experimental plots and after ending growth, preceding crops were harvested. Then the wheat was cultivated in the experimental plots. Finally, after harvesting the wheat, soil samples were collected from the two parts of the root zone (the wheat rhizosphere and the bulk soil). The soil samples were air dried ground and passed through a 2-mm sieve and stored for chemical analysis. Soil pH (in the soil saturation extract) and organic matter (Walkley–Black wet digestion) were measured in standard methods (1). The Total Organic Carbon (TOC) was measured by Analyzer (Primacs SLC TOC Analyzer (CS22), Netherlands). The available Cu in soil was extracted by DTPA and determined using atomic absorption spectroscopy (2). The fractionation of soil Cu was carried out using the MSEP method (3).
Results and Discussion: The results showed that the preceding crops significantly decreased soil pH, also significantly increased the DOC and DTPA-extractable Cu.These changes were higher in the Trifolium preceding treatment in the rhizosphere soil. Also, the preceding crops significantly decreased Carbonate -Cuand Residual-Cu fractions in the wheat rhizosphere compared with the bulk soil. The preceding crops (except Trifolium) significantly increased Oxide-Cu fraction. The soil Oxide- Cu fraction was higher in the rhizosphere in comparison with the bulk soil. The preceding crops increased the Organic-Cu in both the wheat rhizosphere and the bulk soil and it was higher in Trifolium treatment. The preceding crops increased Cu uptake by wheat and Organic-Cu positively correlated with Cu uptake by wheat.
Conclusion: The Organic-Cu fraction increased in the rhizosphere compared with the bulk soil, whereas Oxide- Cu, Carbonate–Cu and Residual-Cu fractions decreased. According to the results, the observed increase in the copper concentration of organic fraction in the rhizosphere was due to the decrease in the copper concentration of carbonate, oxide and residual fractions. In fact, the main process is the transmission of copper from carbonate, oxide and residual fractions to another fraction. Also, the results showed that the root exudates of the preceding crops and wheat affected the different forms of copper in the soil solid phase. Furthermore, the results of copper forms correlation analysis with Cu uptake by wheat showed that the Organic-Cu fraction had more important role in supplying copper was needed for wheat. Therefore, the preceding crops increased the copper concentration of organic fraction in the rhizosphere compared with the bulk soil, and these changes are associated with increasing the amount of copper uptake in wheat.

کلیدواژه‌ها [English]

  • Bulk Soil
  • copper
  • Fractionation
  • Preceding Crops
  • Rhizosphere
  • wheat
1- Achiba W. B., Gabteni N., Lakhdar A., Du Laing G., Verloo M., Jedidi N., and Gallali T. 2009. Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil. Agriculture, Ecosystems and Environment, 130: 156–163.
2- Adamo P., Denaix L., Terribile F., and Zampella M. 2003. Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (southern Italy). Geoderma, 117: 347-366.
3- Allowoy B. J. 1990. Heavy metals in soil. Blackie & son Ltd, Glasgow and London.
4- Bosea S., Anshul J., Vivek R., and Ramanathana A. L. 2008. Chemical fractionation and translocation of heavy metals in Canna indica L. grown on industrial waste amended soil. Journal of Hazardous Materials, 160: 187–193.
5- Bowen G.D., and Rovira A.D. 1991. The rhizosphere, the hidden halfof the hidden half. p. 629-641. In Y. Waisel et al. (ed.) Plant Roots, the hidden half. Marcel Dekker. New York.
6- Chahal D.S., Sharma B.D., and Singh P.K. 2005. Distribution of forms of zinc and their association with soil properties and uptake in different soil orders in semi-arid soils of Punjab, India. Communications in Soil Science and Plant Analysis, 36: 2857- 2874.
7- Chen Y.M., Wang M.K., and Huang P.M. 2006. Catechin transformation as influenced by aluminium. Journal of Agricultural and Food Chemistry, 54: 21-218.
8- Clements S., Palmgren M.G., and Kramer U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 7: 309-315.
9- Dessureault-Rompre J., Nowack B., Schulin R., Tercier-Waeber M.L., and Luster J. 2008. Metal solubility and speciation in the rhizosphere of Lupinus albus cluster roots. Environmental Science and Technology, 42: 7146–7151.
10- Hacisalihoglu G., and Kochian L.V. 2003. How do some plants tolerate low levels of soil zinc Mechanisms of zinc efficiency in crop plants. New Phytologist, 159: 341-350.
11- Hinsinger P., Gobran G. R., Gregory P. J., and Wenzel W. 2005. Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytologist, 168: 293–303.
12- Kabala C., and Singh B.R., 2001: Fractionation and mobility of copper lead and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environmental Quality, 30: 485-492.
13- Li J.X., Yang X.E., He Z.L., Jilani G., Sun C.Y., and Chen S.M. 2007. Fractionation of lead in paddy soils and its bioavailability to rice plants. Geoderma, 141: 174–180.
14- Mench M., and Martin E. 1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L. Nicotiana tabacum L. and Nicotia narustica L. Plant and Soil, 132: 187-196.
15- Mench M. J., and Fargues S. 1994. Metal uptake by iron-efficient and inefficient oats. Plant and Soil, 165: 227-233.
16- Milani P.M., Malakouti M.J., Khademi Z., Balali M.R., and Mashayekhi M. 1998. A fertilizer recommendation model for the wheat field of Iran. Soil and Water Research Institute, Tehran, Iran, p. 98.
17- Mullings G. L., Martens D. C,. Miller W. P,. Kornegay E. T,. and Hallock D. L. 1982. Copper availability, form and mobility in soils from three annual copper-enriched hog manure applications. Journal of Environmental Quality, 11: 316 – 320.
18- Nogueira T., Melo W., Fonseca I., Marcussi S., Melo G., and Marques M. 2010. Fractionation of Zn, Cd and Pb in a tropical soil after nine-year sewage sludge applications. Pedosphere, 20: 545-556.
19- Pais I. J,. and Jones B. 1997. The hand book of trace elements. Stive Luice, Florida.
20- Rollwagen B.A,. and Zasoski R.J. 1988. Nitrogen source effects on rhzosphere pH and nutrient accumulation by Pacific Northwest conifers. Plant and Soil, 105: 79–86.
21- Saffari M., Yasrebi J., Karimian N., and Shan X. Q,. 2009. Evaluation of three sequential extraction methods for fractionation of zinc in calcareous and acidic soils. Research Journal of Biological Sciences, 4: 848-857.
22- Shuman L.M. 1999. Organic waste amendments effect on zinc fractions of two soils. Journal of Environmental Quality, 28: 1442-1447.
23- Sposito G., Lund L.J., and Chang A.C. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Science Society of America Journal, 46: 260–264.
24- Tao S., Chen Y.J., Xu F.L., Cao J., and Li B.G. 2003. Changes of copper speciation in maize rhizosphere soil. Environmental Pollution, 122: 447-454.
25- Tessier A., Campbell P.G.C., and Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51: 844-851.
26- Udom B.E., Mbagwu J.S.C., Adesodun J.K., and Agbim N.N. 2004. Distribution of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge. Environment International, 30:467-470.
27- Wong C.S.C., Li X., and Thornton I. 2006. Urban environmental geochemistry of trace metals. Environmental Pollution, 142: 1-16.
28- Wang Z., Shan X.Q., and Zhang S. 2001. Comparison of speciation and bioavailability of rare earth elements between wet rhizosphere soil and air-dried bulk soil. Analytica Chimical Acta, 441: 147-156.
29- Wang Z., Shan X.Q., and Zhang S. 2002.Comparison between fractionation and bioavailibility of trace elements in rhizosphere and bulk soils. Chemosphere, 46: 1163-1171
30- Youssef R.A., and Chino M. 1989. Root-induced changes in the rhizosphere of plants II. Distribution of heavy metal across the rhizosphere in soil. Soil Science and Plant Nutrition, 35(4): 609-621.
31- Yu Y., and Zhou Q.X. 2006. Impacts of soybean growth on Cu speciation and distribution in two rhizosphere soils. Biology and Fertility of Soils, 42:450–456.
CAPTCHA Image