دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه صنعتی امیرکبیر

چکیده

در این مطالعه به بررسی ویژگی‌های میکرومورفولوژیکی و مینرالوگرافی نوری نمونه‌های خاک حاصل از مرداب سوته در استان گلستان پرداخته‌شده است. در این مطالعه، مرداب جنگلی سوته به‌عنوان یک مرداب حاوی آلی و معدنی در قسمت جنوبی استان گلستان جهت نمونه‌برداری انتخاب گردید. نمونه‌برداری از عمق سطح زمین تا 40 سانتی‌متری به شعاع 10 سانتی‌متر در اردیبهشت‌ماه سال 1393 انجام گرفت. بدین منظور، از نمونه‌های خاک تهیه شده و خشک شده به روش استاندارد، مقاطع میکروسکوپی به‌صورت مقاطع نازک و صیقل تهیه گردید و نمونه‌ها در آزمایشگاه مینرالوگرافی دانشگاه صنعتی امیرکبیر موردمطالعه قرار گرفت. نتایج مطالعات کانی‌شناسی نوری نشان می‌دهد که کوارتز، اورتوز، مسکویت، بیوتیت، کلسیت، پیروکسن‌های اپاسیتی شده و کانی‌های اپاک مهم‌تری نکانی‌هایتشکیل‌دهنده این مرداب می‌باشند. نتایج مطالعات مقاطع صیقلی حاکی از وجود آهن فراوان در نمونه‌هامی‌باشد که درواقع همان کانی‌های اپاک فراوان است. نتایج مطالعات میکرومورفولوژی نشان‌دهنده حضور ریشه گیاهان و دیگر ارگان‌های باقی‌مانده به‌صورت ترکیبی با مواد آلی است. حضور فسیل بریوزوآ می‌توان بیانگر سن احتمالی این مرداب در عهد حاضر باشد. همچنین مطالعات مینرالوگرافی نوری نشان داد که اکثر ذرات ویژگی‌های سنگ مادر را از خود نشان می‌دهند.

کلیدواژه‌ها

عنوان مقاله [English]

Micromorphological and Mineralogical Assessment of Suteh Peat Swamp Forest, Golestan Province

نویسندگان [English]

  • Taymour Eslamkish
  • Milad Kurdi

Amirkabir University of Technology

چکیده [English]

Introduction: Peat is an organic soil which is formed by the accumulation of decayed vegetative matter that have formed in areas of poor water drainage. The mineral components of peat are derived from inorganic matter contained in sediments and by adsorption from groundwater. The inorganic (mineral) fraction of peat usually includes only 2–10 Percent of its dry weight, but for highly decomposed peats can increase to about 60 percent of dry weight. Thin sections of peat reveal detailed information of composition, structure, fabric and particularly pore properties which influence water retention and movement. Peat is a concentrated form of soil organic matter which has environmental, industrial, agricultural and medical uses that range from sustaining the productive capacity of agricultural land. This study has been focused on micromorphological and mineralogical properties of Suteh peat swamp forest (PSF) in Golestan province, north of Iran. Golestan province is the third largest cereal producer in Iran but scarcity of water and salinity are most important major problems in this area. This area has been covered by almost 400,000 hectares of forests. Suteh PSF has been chosen as a swamp that contains organic and inorganic matters. As the inorganic composition of peat varies considerably from region to region, study of mineralogical and micromorphological of Suteh PSF can be useful in order to identification of Golestan province peat swamps. Since the early 1990s, micromorphological studies have become increasingly popular in the analysis of lakeside settlements. The evaluation of soils considers thin-section observations, macromorphological features, and laboratory data. Micromorphological analyses allow the characterization of natural and anthropogenic sediments, which in turn enables the determination of sedimentary processes and depositional environment.
Materials and Methods: This study was carried out in April 2014. The samples were collected from zero to 40 cm depth of swamp areas, within a 10 cm radius. At each sampling station, peat samples were collected with a trowel. The area included the north side of the Alborz Mountains and extended northward to the township of Gorgan. The altitude was approximately 950–2000 m a.s.l. According to the Gorgan Natural Resources Bureau report, Suteh is temperate to semi-arid on the Emberger climate diagram. To achieve the purpose, samples were dried and prepared based on standard methods. These studies were carried out using polarized microscope on thin sections and polished section at the Mineralogy Laboratory of the Amirkabir University of Technology.To prepare thin sections for microscopy studies, samples with polyester, cobalt oxide and hardener have been combined. Polyester formed the matrix of the section and hardener (HCl + H2O2) has been used to reduce a hard time getting. Cobalt oxide has been used as a catalyst between them. The samples have been kept tight in special containers. Due to the presence of organic matter, much time was needed to harden them. The samples were dried and tightened for 20 days. Then, the samples were polished by various polishers (No. 400, 600, 800, 1000 and 2000). After that, they were polished for 20 minutes by the suspension of alumina (Al2O3 + H2O).
Results and Discussion: The coarse material that formed groundmass were composed of quartz, muscovite, orthoclase, calcite, opacity pyroxene biotite and opaque minerals. Some flakes of muscovite, pyroxene and biotite showed weathering. Fe–Mn components were most common in opaque minerals. Quartz crystals were seen in abundance in most sections. Weathered surface of orthoclase was seen in some sections. The large biotite crystals were seen at different sections with pleochroism light brown to dark brown. Root and other organ residues in varieties states of decomposition were observed in some sections. Fragments of organ and tissue residues were rather few and found mostly in the surface of Suteh PSF. For detailed assessment of opaque minerals, one of the grains was selected and analyzed. The weathering of minerals showed the normal stability trend, i.e. quartz >muscovite>biotite. Biotite loses its pleochroism and alters first to a mica-vermiculite interstratified clay mineral. Polished sections study showed Fe components were the major and dominate in the sections.
Conclusions: Thin sections results showed the samples contained quartz, orthoclase, muscovite, biotite, calcite, opacity pyroxene and opaque minerals. Polished sections results revealed that Fe components were most common in opaque minerals in the sections. Micromorphological study showed root and other organ residues in Suteh PSF that this showed this soil composed of a mixture of organ residues and organic material.

کلیدواژه‌ها [English]

  • Micromorphology
  • Mineralogy
  • Organic soil
  • Suteh Peat Swamp Forest
1- Andriesse J. P. 1988. Nature and management of tropical peat soils (No. 59). Food & Agriculture Org.
2- Babel U. 1975. Micromorphology of soil organic matter. In Soil components. Springer Berlin Heidelberg.
3- Bottrell S., Coulson J., Spence M., Roworth P., Novak M., & Forbes L. 2004. Impacts of pollutant loading, climate variability and site management on the surface water quality of a lowland raised bog, Thorne Moors, E. England, and UK. Applied geochemistry, 19(3): 413-422.
4- Coggins A.M., Jennings S.G., & Ebinghaus R. 2006. Accumulation rates of the heavy metals lead, mercury and cadmium in ombrotrophic peatlands in the west of Ireland. Atmospheric Environment, 40(2): 260-278.
5- Damman A.W.H. 1978. Distribution and movement of elements in ombrotrophic peat bogs. Oikos. 30: 480–495.
6- Dellwig O., Watermann F., Brumsack H. J., Gerdes G., & Krumbein, W. E. 2001. Sulphur and iron geochemistry of Holocene coastal peats (NW Germany): a tool for palaeoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 167(3): 359-379.
7- Gallego J.L.R., Ortiz J.E., Sierra C., Torres T., & Llamas J. F. 2013. Multivariate study of trace element distribution in the geological record of Roñanzas Peat Bog (Asturias, N. Spain). Paleoenvironmental evolution and human activities over the last 8000calyr BP. Science of the Total Environment, 454: 16-29.
8- Gardea-Torresdey J. L., Tang, L., & Salvador, J. M. 1996. Copper adsorption by esterified and unesterified fractions of Sphagnum peat moss and its different humic substances. Journal of Hazardous Materials, 48(1): 191-206.
9- Goldberg P., & Macphail R. I., 2008. Practical and theoretical geoarchaeology. Blackwell publishing.
10- Gorgan Natural Resources Burea., 2011. http://golestan.frw.org.ir/01/En/.
11- Gorham E., & Janssens J. A. 2005. The distribution and accumulation of chemical elements in five peat cores from the mid-continent to the eastern coast of North America. Wetlands, 25(2):259-278.
12- Gosset T., Trancart J. L., and Thevenot D. R. 1986. Batch metal removal by peat. Kinetics and thermodynamics. Water Research, 20(1):21-26.
13- Grootjans A., Iturraspe R., Fritz C., Moen A., and Joosten H. 2014. Mires and mire types of Peninsula Mitre, Tierra del Fuego, Argentina. Mires and Peat, 14-1.
14- Ho Y. S., Wase D. J., & Forster C. F., 1995. Batch nickel removal from aqueous solution by sphagnum moss peat. Water Research, 29(5): 1327-1332.
15- La Daana K.K., Gobin J.F., Beckles D.M., Lauckner B., & Mohammed A. 2014. Metals in sediments and mangrove oysters (Crassostrea rhizophorae) from the Caroni Swamp, Trinidad. Environmental monitoring and assessment, 186(3): 1961-1976.
16- Leson G., & Winer A.M. 1991. Biofiltration: an innovative air pollution control technology for VOC emissions. Journal of the Air & Waste Management Association, 41(8): 1045-1054.
17- Malawska M., Ekonomiuk A., & Wiłkomirski B. 2006. Chemical characteristics of some peatlands in southern Poland. Mires and Peat, 1(02): 1-14.
18- Mandernack K.W., Lynch L., Krouse H.R., and Morgan M. D. 2000. Sulfur cycling in wetland peat of the New Jersey Pinelands and its effect on stream water chemistry. Geochimica et Cosmochimica Acta, 23: 3949–3964.
19- Punning J. M., & Alliksaar T. 1997. The trapping of fly-ash particles in the surface layers ofSphagnum-dominated peat. Water, air, and soil pollution, 94(1-2): 59-69.
20- Purmalis O., & Klavins M. 2013. Comparative study of peat humic acids by using UV spectroscopy. European Scientific Journal, 9(21).
21- Ramsar, Cop11. 2011. Ramsar and peatlands: the implementation of Res. VIII.17 on Global Action on Peatlands by Ramsar parties, Bucharest, July, 7, 2011.
22- Rothwell J. J., Evans M. G., & Allott T. E. H. 2006. Sediment-water interactions in an eroded and heavy metal contaminated peatland catchment, southern Pennines, UK. In The Interactions between Sediments and Water. Springer Netherlands.
23- Schnitzer M., & Khan S. U. (Eds.). 1975. Soil organic matter (Vol. 8). Elsevier.
24- Sharma D. C., & Forster C. F., 1993. Removal of hexavalent chromium using sphagnum moss peat. Water Research, 27(7):1201-1208.
25- Shotyk W. 1988. Review of the inorganic geochemistry of peats and peatland waters. Earth Sci. Rev. 25: 95–176.
26- Smieja-Krol B., Fiałkiewicz-Kozieł B., Sikorski J., & Palowski B. 2010. Heavy metal behaviour in peat–A mineralogical perspective. Science of the total environment, 408(23): 5924-5931.
27- Stanislawska-Glubiak E., Korzeniowska J., & Kocon A. 2014. Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils. Environmental Science and Pollution Research, 1-9.
28- Steinmann P., & Shotyk W. 1997. Chemical composition, pH, and redox state of sulfur and iron in complete vertical porewater profiles from two Sphagnum peat bogs, Jura Mountains, Switzerland. Geochimica et Cosmochimica Acta, 61(6): 1143-1163.
29- Weiss D., Shotyk W., Rieley J., Page S., Gloor M., Reese S., & Martinez-Cortizas A. 2002. The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition. Geochimica et Cosmochimica Acta, 66(13):2307-2323.
30- Yu Z., Loisel, J., Brosseau D. P., Beilman D. W., & Hunt S. J. 2010. Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters, 37(13).
31- Zulkifley M.T.M., Ng, T.F., Abdullah W.H., Raj, J.K., Shuib M.K., Ghani A.A., and Ashraf M.A. 2015. Geochemical characteristics of a tropical lowland peat dome in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia. Environmental Earth Sciences, 73(4):1443-1458.
CAPTCHA Image