1- Aliasgharzad N. 2000. The abundance and distribution of arbuscular mycorrhizal fungi in saline soils of the Tabriz plain and their inoculation effects on the improvement of salt tolerance in onion and barley. Ph.D Thesis, University of Tehran, Karaj, Iran. (In Persian with English abstract)
2- Bartels D., and Sunkar R. 2005. Drought and salt tolerance in plants. Crit. Rev. Plant Sci., 24: 23–58.
3- Carrow R.N., and Duncan R.R. 1998. Salt-affected turfgrass sites: Assessment and management. Sleeping Bear Press, Farmington Hills, MI.
4- Chalmers D.J., Burge G., Jerie P.H., and Mitchell P.D. 1986. The mechanism of regulation of Bartlett pear fruit and vegetative growth by irrigation with holding and regulated deficit irrigation. Journal of the American Society of Horticultural Science 111: 904–907.
5- Chalmers D.J., Mitchell P.D., and Vanheek L. 1981. Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning. Journal of the American Society of Horticultural Science 106: 307–312.
6- Charrera M., Parasi G.A., and Monet R. 1998. Rootstock influence on the performance of the peach variety "Catherine". Acta Horticulturae 465: 573–577.
7- Chauvin W., Ameglio T., Prunet J.P., and Soing P. 2006. Irrigation of walnut trees managing the water potential. Acta Horticulturae 705: 473–477.
8- Chone X., Van Leeuwen C., Dubourdieu D., and Gaudillère J.P. 2001. Stem water potential is a sensitive indicator of grapevine water status. Annals of Botany 87: 477–483.
9- El Gharbi A., and Jraidi B. 1994. Performance of rootstocks of almond, peach and peach × almond hybrids with regard to iron chlorosis. Acta Horticulturae 373: 91-97.
10- FAO. 1994. Land degradation in South Asia: Its severity, causes and effects upon the people. World Soil Resources Reports. FAO, Rome.
11- Flowers T.J. 1999. Salinization and horticultural production. Scientia Horticulturae 78: 1–4.
12- Flowers T.J., and Yeo A.R. 1986. Ion relations of plants under drought and salinity. Australian Journal of Plant Physiology 13: 75–91.
13- Fulton A., Buchner R., Olson W., and Shackel K. 2001. Rapid equilibration of leaf and stem water potential under field conditions in almonds, walnuts, and prunes. HortTechnology 11(4): 609–615.
14- Garcia-Tejero I., Duran-Zuazo V.H., Arriaga J., Hernandez A., Velez L.M., and Muriel-Fernandez J.L. 2012. Approach to assess infrared thermal imaging of almond trees under water-stress conditions. Fruits 67: 463–474.
15- Garnier E., and Berger A. 1985. Testing water potential in peach trees as an indicator of water stress. Journal of Horticultural Science 60: 47–56.
16- Girona J., Mata M., and Marsal J. 2005. Regulated deficit irrigation during the kernel filling period and optimal irrigation rates in almond. Agricultural Water Management 75: 152–167.
17- Goldhamer D.A., and Fereres E. 2004. Irrigation scheduling of almond trees with trunk diameter sensors. Irrigation Science 23: 11–19.
18- Gomes-Laranjo J., Coutinho J.P., Galhano V., and Cordeiro V. 2006. Responses of five almond cultivars to irrigation: Photosynthesis and leaf water potential. Agricultural Water Management 83: 261–265.
19- Ghotbizadeh M., and Sepaskhah A.R. 2015. Effect of irrigation interval and water salinity on growth of vetiver (Vetiveria zizanioides). International Journal of Plant Production 9(1): 17–38.
20- Gucci R., Lombardini L., and Tattini M. 1997. Analysis of leaf water relations in leaves of two olive (Olea europea L.) cultivars differing in tolerance to salinity. Tree Physiology 17: 13–21.
21- Hsiao T.C. 1973. Plant responses to water stress. Annual Review of Plant Physiology 24: 519–570.
22- Idso S.B., and Reginato R.J. 1982. Soil- and atmosphere-induced plant water stress in cotton as inferred from foliage temperatures. Water Resources Research 18(4): 1143–1148.
23- Jones H.G. 2004. Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of Experimental Botany 55(407): 2427–2436.
24- Jones H.G., and Cumming I.G. 1984. Variation of leaf conductance and leaf water potential in apple orchards. Journal of Horticultural Science 59(3): 329–336.
25- Klein I., Esparza G., Weinbaum S.A., and De Jong T.M. 2001. Effects of irrigation deprivation during the harvest period on leaf persistence and function in mature almond trees. Tree Physiology 21: 1063–1072.
26- Kluitenberg GJ and Biggar JW, 1992. Canopy temperature as a measure of salinity stress on sorghum. Irrigation Science 13(3): 115-121.
27- Lemeur R., Ranjbar A., and Van Damme P. 2001. Ecophysiological characteristics of two pistachio species (Pistacia khinjuk and Pistacia mutica) in response to salinity. p. 179-187. In: A.k. BE (ed.) XI GREMPA Seminar on Pistachios and Almonds. Zaragoza: CIHEAM, (Cahiers Options Mediterraneennes; n. 56).
28- Levitt J. 1980. Salt and ion stresses. p. 365–488. In J. Levitt (ed.) Responses of Plant to Environmental Stresses. Vol 2. New York, Academic Press.
29- Maas E.V. 1986. Salt tolerance in plants. Applied Agricultural Research 1: 12–26.
30- Marsal J., Girona J., and Mata M. 1997. Leaf water relation parameters in almond compared to hazelnut trees during a deficit irrigation period. Journal of the American Society for Horticultural Science 122: 582–587.
31- McCutchan H., and Shackel K.A. 1992. Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French). Journal of the American Society for Horticultural Science 117(4): 607‒611.
32- Monastra F., and Raparelli E., 1997. Inventory of almond research, germplasm and references, REUR Technical Series 51, FAO, Rome.
33- Monteith J.L. 1973. Principles of Environmental Physics. Edward Arnold, London.
34- Morales M.A., Alarcon J.J., Torrecillas A., and Sanchez-Blanco M.J. 2000. Growth and water relations of Lotus creticus creticus plants as affected by salinity. Biologia Plantarum 43(3): 413–417.
35- Mousavi A., Lessani H., Babalar M., Talaei A.R., and Fallahi E. 2008. Influence of salinity on chlorophyll, leaf water potential, total soluble sugars, and mineral nutrients in two young olive cultivars. Journal of Plant Nutrition 31: 1906–1916.
36- Munns R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment 25(2): 239–250.
37- Murray F.W. 1967. On the computation of saturation vapor pressure. Journal of Applied Meteorology 6: 203–204.
38- Naor A. 1998. Relations between leaf and stem water potential and stomatal conductance in three field-grown woody species. Journal of Horticultural Science Biotechnology 73: 431–436.
39- Naor A. 1999. Midday stem water potential as a plant water stress indicator for irrigation scheduling in fruit trees. Acta Horticulturae 537: 447–454.
40- Naor, A. 2000. Midday stem water potential as a plant water stress indicator for irrigation scheduling in fruit trees. Acta Horticulturae 537: 447–454.
41- Naor A., Gal Y., and Bravdo B. 1997. Crop load affects assimilation rate, stomatal conductance, stem water potential and water relations of field-grown ‘Sauvignon blanc’ grapevines. Journal of Experimental Botany 48: 1675–1680.
42- Naor A., Hupert H., Greenblat Y., Peres M., and Klein I. 2001. The response of nectarine fruit size and midday stem water potential to irrigation level in stage III and crop load. Journal of the American Society for Horticultural Science 126: 140–143.
43- Naor A., Naschitz S., Peres M., and Gal Y. 2008. Responses of apple fruit size to tree water status and crop load. Tree Physiology 28(8): 1255–1261.
44- Nortes P.A., Perez-Pastor A., Egea G., Conejero W., and Domingo R. 2005. Comparison of changes in stem diameter and water potential values for detecting stress in young almond trees. Agricultural Water Management 77: 296–307.
45- Peretz J., Evans R.G., and Proebsting E.L. 1984. Leaf water potentials for management of high frequency irrigation on apples. Transactions of the American Society of Agricultural Engineers 27: 437–442.
46- Rahimi Eichi V. 2013. Water use efficiency in almond (Prunus dulcis (Mill.) D. A. Webb). M.Sc. thesis. School of Agriculture, Food and Wine. Faculty of Science. University of Adelaide.
47- Romero P., Botia P., and Garcia F. 2004a. Effects of regulated deficit irrigation under subsurface drip irrigation conditions on water relations of mature almond trees. Plant and Soil 260: 155–168.
48- Romero P., Navarro J.M., Garcia F., and Ordaz P.B. 2004b. Effects of regulated deficit irrigation during the pre-harvest period on gas exchange, leaf development and crop yield of mature almond trees. Tree Physiology 24: 303–312.
49- Ruiz-Sanchez M.C., Torrecillas A., Del Amor F., Leon A., and Abrisqueta J.M. 1988. Leaf water potential and leaf conductance during the growing season in almond trees under different irrigation regimes. Biologia Plantarum 30(5): 327–332.
50- Scholander P.F., Hammel H.T., Bradstreet E.D., and Hemmingsen E.A. 1965. Sap pressure in vascular plants. Science 148: 339–346.
51- Sdoodee S., and Somjun J. 2008. Measurement of stem water potential as a sensitive indicator of water stress in neck orange (Citrus reticulata Blanco). Songklanakarin Journal of Science and Technology 30(5): 561–564.
52- Sepulcre-Canto G., Zarco-Tejada P.J., Jimenez-Muñoz J.C., Sobrino J.A., de Miguel E., and Villalobos F.J. 2006. Detection of water stress in an olive orchard with thermal remote sensing imagery. Agricultural and Forest Meteorology 136: 31‒44.
53- Shackel K. 2011. A plant-based approach to deficit irrigation in trees and vines. Horticultural Science 46(2): 173–177.
54- Shackel K.A., Ahmadi H., Biasi W., Buchner R., Goldhamer D., Gurusinghe S., Hasey J., Kester D., Krueger B., Lampinen B., McGourty G., Micke W., Mitcham E., Olson B., Pelletrau K., Philips H., Ramos D., Schwankl L., Sibbett S., Snyder R., Southwick S., Stevenson M., Thorpe M., Weinbaum S., and Yeager J. 1997. Plant water status as an index of irrigation need in deciduous fruit trees. HortTechnology 7(1): 23–29.
55- Shackel K.A., Lampinen B., Sibbett S., and Olson W. 2000. The relation of midday stem water potential to the growth and physiology of fruit trees under water limited conditions. Acta Horticulturae 537: 425–430.
56- Shannon M.C., Grieve C.M., and Francois L.E. 1994. Whole-plant response to salinity. p. 199-244. In R.E. Wilkinson (ed.) Plant-Environment Interactions. New York: Marcel Dekker, Inc.
57- Tardieu F., and Simonneau T. 1998. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany 49: 419–432.
58- Tuteja N. 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology 428: 419–438.
59- West D.W. 1978. Water use and sodium chloride uptake by apple trees I. The effect of non-uniform distribution of sodium chloride in the root zone. Plant and Soil 50(1–3): 37–49.
60- Williams L.E., and Araujo F.J. 2002. Correlations among predawn leaf, midday leaf, and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera. Journal of the American Society for Horticultural Science 127: 448–454.
61- Yadollahi A., and NazaryMoghadam A.R. 2012. Micropropagation of GF677 rootstock. Journal of Agricultural Science 4(5): 131–138.
62- Ye Z. 2016. Salinity stress, a key factor affecting almond tree stem water potential. Available at: https://ysp.ucdavis.edu/content/salinity-stress-key-factor-affecting-almond-tree-stem-water-potential. (visited 6 May 2019).
63- Zrig A., Ben Mohamed H., Tounekti T., Ennajeh M., Valero D., and Khemira H. 2015. A Comparative Study of Salt Tolerance of Three Almond RootstocksJournal of Agricultural Science and Technology 17: 675–689.
Send comment about this article