دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه بین المللی امام خمینی (ره) قزوین

چکیده

بررسی و پیش‏بینی فرآیند جذب فسفر در خاک نقش بسزایی در ارائه راهکارهای کاربردی برای کاهش تجمع فسفر مصرفی و افزایش قابلیت دسترسی آن برای محصولات کشت شده دارد. در این مطالعه، سینتیک جذب و همینطور اثرات دما در سه سطح (12، 25 و 38 درجه سانتی‏گراد)، شوری در پنج سطح (0، 96/8، 02/17، 09/32 و 25/46 دسی زیمنس بر متر)، pH در شش سطح (5/2، 5/3، 36/5، 5/7، 5/9 و 5/11) و نوع محلول زمینه حاوی فسفر (آب مقطر و محلول کلسیم کلرید 01/0 مولار) بر روی جذب تعادلی فسفر در یک خاک کشاورزی منطقه مهدی‏آباد دشت قزوین با استفاده از آزمایش رآکتوری مورد ارزیابی قرار گرفت. نتایج نشان داد که معادله الوویچ بالاترین همبستگی (964/0=r2) را با داده‏های آزمایشگاهی سینتیک جذب داشت و بیش‏ترین میزان جذب در 8 ساعت اول تماس خاک با محلول فسفر اتفاق افتاد. با تغییر دما از 25 به 38 درجه‏ سانتی‏گراد حداکثر ظرفیت جذب 1/2 برابر و در شرایط استفاده از محلول الکترولیت کلسیم کلرید به جای آب مقطر حداکثر ظرفیت جذب 5/7 برابر بود. این عوامل از طریق تأثیرگذاری بر روی قدرت تبادل یونی منجر به تغییر مقدار جذب فسفر بر روی سطوح جاذب شده‏اند. کاهش شوری و افزایش pH نیز از طریق ایجاد تغییر در تعداد آنیون‏های موجود در محلول و نوسان در بار سطوح جاذب، افزایش معنی‏دار در مقدار جذب را موجب گردیده و بیشترین مقدار تغییرات در جذب، بین pH 36/5 تا 5/7 اتفاق افتاد. نتایج بررسی ترمودینامیک جذب نیز بیانگر گرماگیر و خود به ‏‏خودی بودن فرآیند جذب بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Kinetics and Thermodynamics of Phosphorus Adsorption onto a Clay Soil Influenced by Various Environmental Parameters

نویسندگان [English]

  • B. Kamali
  • A. Sotoodehnia
  • A. Mahdavi mazdeh

Imam Khomeini International University of Qazvin

چکیده [English]

Introduction
 Phosphorus is an essential soil nutrient that plays key roles in plant growth and development. Limited availability of P is the main constraint for crop production in many soils. Long-term phosphate fertilizers application in agricultural areas to increase the physiological efficiency of crops can lead to a significant P accumulation. The process of P fixation or sorption includes precipitation and adsorption onto mineral and organic surfaces. Various factors such as clay content, organic matter, exchangeable Al, Fe, Ca content and pH soil affect P sorption capacity. In order to achieve the proper management of P fertilization, it is necessary to understand the mechanism of the sorption process and the contributing factors, as well as how to influence these factors. Qazvin plain is one of the most important agricultural plains in Iran, playing a pivotal role in maintaining national food security. Cultivating crops such as wheat, barley, alfalfa and corn in different areas of this plain is widespread. Therefore, high amounts of phosphate fertilizers are applied in this plain every year. In this study, the kinetic and equilibrium adsorption of P in a heavy textured agricultural soil sample in Qazvin plain were investigated under the influence of some different environmental parameters.
Materials and Method
In order to conduct the kinetic adsorption experiment, one gram soil samples were placed in the shaker in contact with 25 ml of 0.01 M CaCl2 solution containing 20 mg P l-1. Time intervals were 0.17, 0.5, 1, 2, 4, 8, 16, 24, 48 and 72 hours. The effects of temperature (12, 25, 38 °C), salinity (0, 8.96, 17.02, 32.09, 46.25 dS m-1), pH (2.5, 3.5, 5.36, 7.5, 9.5, 11.5) and the type of background solution (distilled water and 0.01 M CaCl2 solution) were also investigated on P equilibrium adsorption. In the equilibrium batch experiments, the soil samples were placed in contact with the background solutions containing 0, 15, 20, 30, 50, 80 and 100 mg P l-1 (ratio 1:25) for 24 hours. The concentration of P in the samples was determined by a spectrophotometer after passing through the filter. The amount of P adsorption to each soil sample was then calculated based on the concentrations. The experiments were carried out in the factorial and completely randomized designs with three replications for each treatment. Using CurveExpert 1.4 software, the Langmuir and Freundlich isotherms, as well as the pseudo-first-order, pseudo-second-order, the Elovich and Intra-particle diffusion models were fitted to the obtained laboratory data. Statistical analysis of experimental data was done based on the Tukey test at 5% level using Minitab software. The thermodynamics of P adsorption was also determined by examining parameters of the Gibbs free energy, enthalpy and entropy changes.
Results and Discussion
 According to the results, the highest amount of adsorption occurred in the first 8 hours of soil contact with P solution, and approximate time of achieving the equilibrium conditions was 24 to 48 hours. The process of P adsorption onto soil particles consisted of two fast and slow stages until the equilibrium was reached. The kinetic adsorption properties of the studied soil was best described by the Elovich equation (r2=0.964). The Freundlich model showed better fit than the Langmuir equation to the equilibrium data. The effects of all four parameters of temperature, salinity, pH and background electrolyte solution on the P equilibrium adsorption were significant. By changing the temperature from 25 to 38 °C, qm (Langmuir coefficient) was 2.1 times. It was also 7.5 times under the conditions of using CaCl2 solution instead of distilled water. Increasing pH caused an increase in adsorption rate and the highest amount of adsorption changes occurred in the pH varying between 5.36 and 7.5. However, the highest and lowest P adsorption percentage with the values of 45 and 37% were related to zero and 46.25 dS m-1 salinity, respectively. The results also indicated that the sorption process was endothermic and spontaneous.
Conclusion
 Adjusting and controlling the studied parameters in the soil during the application of phosphate fertilizers can optimize P use efficiency and increase crop yield in the studied area. Based on the results of the present study, it is recommended to add sulfur, ammonium sulfate, ammonium nitrate fertilizers and organic compounds to the studied calcareous soil with high pH and low salinity. Application of this method can reduce soil pH, which leads to a decreased P sorption onto the soil particles and an enhanced P availability for plants. Adjusting the P fertilization time with the crop growth and uptake is also recommended due to the high adsorption of P onto the soil particles in a short period of time.

کلیدواژه‌ها [English]

  • Adsorption kinetics
  • Electrolyte solution
  • Phosphorus
  • Salinity
  • Thermodynamics
  1. Bai J., Ye X., Jia J., Zhang G., Zhao Q., Cui B., and Liu X. 2017. Phosphorous sorption- desorption and effects of temperature, pH and salinity on phosphorous sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere 188: 677-688. https://doi.org/10.1016/j.chemosphere.2017.08.117.
  2. Bala P., Bhardwaj S.S. and Sidhij P.S. 2000. Effect of electrolyte pH on phosphate adsorption by soils. Asian Journal of Chemistry 12(2): 394-398.
  3. Barrow N.J., Bowden J.W., Posner A.M. and Quirk J.P. 1980. Describing the effects of electrolyte on adsorption of phosphate by a variable charge surface. Australian Journal of Soil Research 18(4): 395-404. https://doi.org/1071/sr9800395.
  4. Beji R., Hamdi W., Kesraoui A., and Seffen M. 2017. Effects of salts on phosphorus adsorption in alkalize Tunisian soil. Euro-Mediterr J Environ Integr 2(1): 1-9. https://doi.org/10.1007/s41207-016-0012-7.
  5. Biswas A.K., Tomar K.P., and Barman K.K. 1999. Effect of pH and electrolyte on phosphate adsorption by some vertisols. Journal of the Indian Society of Soil Science 47(1): 40-45.
  6. Bruland G.L., and DeMent G. 2009. Phosphorus sorption dynamics of Hawaii’s coastal wetlands. Estuaries Coasts 32(5): 844-854. https://doi.org/10.1007/s12237-009-9201-9.
  7. Cerozi B.S., and Fitzsimmos K.M. 2016. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresource Technology 219: 778-781. https://doi.org/ 1016/j.biortech.2016.08.079.
  8. Cheung K.C., and Venkitachalam T.H. 2006. Kinetic studies on phosphorus sorption by selected soil amendments for septic tank effluent renovation. Environmental Geochemistry and Health 28(1-2): 121-131. https://doi.org/10.1007/s10653-005-9021-1.
  9. Fink J.R., Inda A.V., Bavaresco J., Barron V., Torrent J., and Bayer C. 2016. Adsorption and desorption phosphorus in subtropical soils as affected by management system and mineralogy. Soil and Tillage Research 155: 62-68. https://doi.org/10.1016/j.still.2015.07.017.
  10. Gee G.W., and Bauder J.W. 1986. Particle-size analysis. p. 383-411. In methods of soil analysis. Part 1. Physical and mineralogical methods. 2nd Soil Science Society of America Journal. https://doi.org/10.2136/sssabookser5.1.2ed.c15.
  11. Gimsing A.L., and Borggaard O.K. 2001. Effect of KCl and CaCl2 as background electrolytes on the competitive adsorption of glyphosate and phosphate on goethite. Clays and Clay Minerals 49(3): 270-275. https://doi.org/10.1346/CCMN.2001.0490310.
  12. Hamdi W., Pelster D., and Seffen M. 2014. Phosphorus sorption kinetics in different types of alkaline soils. Archives of Agronomy and Soil Science 60(4): 577-586. https://doi.org/1080/03650340.2013.830287.
  13. Hou L.J., Liu M., Jiang H.Y., Xu S.Y., Ou D.N., Liu Q.M., and Zhang B.L. 2003. Ammonium adsorption by tidal flat surface sediments from the Yangtze estuary. Environmental Geology 45: 72-78. https://doi.org/10.1007/s00254-003-0858-2.
  14. Huang S., Huang H., and Zhu H. 2016. Effects of the addition of iron and aluminum salt on phosphorus adsorption in wetland sediment. Environmental Science and Pollution Research 23(10): 10022-10027. https://doi.org/10.1007/s11356-016-6188-1.
  15. Illés, and Tombácz E. 2006. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science 295(1): 115-123. https://doi.org/10.1016/j.jcis.2005.08.003.
  16. Jin X., Wang S., Pan Y., Zhao H., and Zhou X. 2005. The adsorption of phosphate on different trophic lake sediments. Colloids and Surfaces A: Physicochemical and Engineering Aspects 254: 241-248. https://doi.org/10.1016/j.colsurfa.2004.11.016.
  17. Karunanithi R., Ok. Y.S., Dharmarajan R., Ahmad M., Seshadri B., Bolan N., and Naidu R. 2017. Sorption, kinetics and thermodynamics of phosphate sorption onto soybean stover derived biochar. Environmental Technology and Innovation 8: 113-125. https://doi.org/10.1016/j.eti.2017.06.002.
  18. Li M., Liu J., Xu Y., and Qian G. 2015. Phosphate adsorption on metal oxides and metal hydroxides: a comparative review. Environment Review 24: 319-332. https://doi.org/10.1139/er-2015-0080.
  19. Lindsay W.L., and Norvvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganes and copper. Soil Science Society of America Journal 42(3): 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x.
  20. Liu Y., and Hu. X. 2019. Kinetics and thermodynamics of efficient phosphorus removal by a composite fiber. Applied Sciences 9(11). https://doi.org/10.3390/app9112220.
  21. Liu M., Hou L., Xu S., Ou D., Yang Y., Zhang B., and Liu Q. 2002. Adsorption of phosphate on tidal flat surface sediments from the Yangtze Estuary. Environmental Geology 42(6): 657-665. https://doi.org/1007/s00254-002-0574-3.
  22. Loeppert R.H., and Suarez D.L. 1996. Carbonate and Gypsum. Chapter 15. U.S. Department of Agricultural Research Service, Lincoln, Nebraska. https://doi.org/10.2136/sssabookser5.3.c15.
  23. Lopez-Luna J., Ramirez-Montes L.E., Martinez-Vargas S., Martinez A.I., Mijangos-Recardez O.F., Gonzalez-Chavez M.A., Carrillo-Gonzalez R., Solis-Dominguez F.A., Cuevas-Diaz M.C., and Vazquez-Hipolito V. 2019. Linear and nonlinear kinetic and isotherm adsorption for arsenic removal by manganese ferrite nanoparticles. SN Applied Sciences 1: 950. https://doi.org/1007/s42452-019-0977-3.
  24. Maguire R.O., Sims J.T., and Foy R.H. 2001. Long- term kinetics for phosphorus sorption- desorption by high phosphorus soils from Ireland and the Delmarva Peninsula, USA. Soil Science 166(8): 557-565. https://doi.org/1097/00010694-200108000-00007.
  25. Mirzaghaderi G., Moradi M., and Fallah F. 2010. An introduction to statistics and probability. Publications of Kurdistan University, Iran. (In Persian)
  26. Moazed H., Hoseini Y., Naseri A.A., and Abbasi F. 2010. Determining phosphorus adsorption isotherm in soil and its relation to soil characteristics. International Journal of Soil Science 5(3): 131-139. https://doi.org/10.3923/ijss.2010.131.139.
  27. Murphy J., and Riley JP.A. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5.
  28. Muwamba A., Morgan K.T., and Nkedi-Kizza P. 2019. Sorption of Phosphorus from fertilizer mixture. IntechOpen. University of Florida, Gainesville, Florida, USA. https://doi.org/10.5772/intechopen.80420.
  29. Ngatia L.W., Grace III J.M., Moriasi D., Bolques A., Osei G.K., and Taylor R.W. 2019. Biochar Phosphorous sorption- desorption: potential phosphorous eutrophication mitigation. An Imperative Amendment for Soil and the Environment. College of agriculture and food science. Florida University, USA. https://doi.org/10.5772/intechopen.82092.
  30. Ololade O.O., Aiyesanmi A.F., Okoronkwo A.E., Ololade I.A., and Adanigbo P. 2019. Influence of electrolyte composition and pH on glyphosate sorption by cow-dung amended soil. Journal of Environmental Science and Health 54(9): 758-769. https://doi.org/10.1080/03601234.2019.1631100.
  31. Pardo M.T., Guadalix M.E., and Garcia-Gonzalez M.T. 1992. Effect of pH and background electrolyte on P sorption by variable charge soils. Geoderma 54(1-4): 275-284. https://doi.org/10.1016/0016-7061(92)90109-K.
  32. Pierzynski G.M. 2000. Methods of phosphorus analysis for soils, sediments, residuals and waters. A publication of SERA-IEG 17. Kansas State University, Manhattan.
  33. Reddy K.R., and DeLaune R.D. 2008. Biogeochemistry of wetlands: science and applications. CRC Press LLC. Boca ration, Florida. https://doi.org/10.1201/9780203491454.
  34. Regan K.B., and Andersen D.S. 2013. Kinetics of phosphorus sorption in vegetative treatment area soils. Agricultural and biosystems engineering. Conference proceedings and presentations, 21-24 Jul. 2013. Kansas City, Missouri. https://doi.org/13031/aim.20131608507.
  35. Rhoades J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. Chapter 14. U.S. Salinity Laboratory, Riverside, California. Error! Hyperlink reference not valid..
  36. Safari Sinegani A.A., and Sedri S. 2011. Effects of sterilization and temperature on the decrease kinetic of phosphorus bioavailability in two different soil types. Journal of Soil Science and Plant Nutrition 11(2): 110-123. https://doi.org/10.4067/S0718-95162011000200010.
  37. Santos H., Oliveira F., Salcedo I., Souza A., and Silva V. 2011. Kinetics of phosphorus sorption in soils in the state of Paraiba. Revista Brasileira de Ciencia do Solo 35(4): 1301-1310. https://doi.org/1590/S0100-06832011000400024.
  38. Sarathi Guru P., and Dash S. 2012. Eggshell particles (ESP) as potential adsorbent for styryl pyridinium dyes- A kinetic and thermodynamic study. Journal of Dispersion Science and Technology 33: 1012-1020. https://doi.org/10.1080/01932691.2011.590750.
  39. Sparks D.L. 2003. Environmental soil chemistry. Academic press, Amsterdam, The Netherland.
  40. Sparks D.L. 1996. Methods of soil analysis. Part 3. Chemical methods, Madison, Wis., Soil Science Society of America: American Society of Agronomy. https://doi.org/10.2136/sssabookser5.3.
  41. Thomas G.W. 1996. Soil pH and soil acidity. Chapter 16. University of Kentuchy, Lexington. https://doi.org/10.2136/sssabookser5.3.c16.
  42. Tirado R., and Allsopp M. 2012. Phosphorus in agriculture- problems and solutions. Technical Report (review). Greenpeace research laboratories. Amsterdam, the Netherlands.
  43. Walkley A., and Black I.A. 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1): 29-38. https://doi.org/ 1097/00010694-193401000-00003.
  44. Wolde Z., and Haile W. 2015. Phosphorus sorption isotherms and external phosphorus requirements of some soils of southern Ethiopia. African Crop Science Journal 23(2): 89-99. https://doi.org/10.4314/ACSJ.V2312.
  45. Yuan X., Xia W., An J., Yin J., Zhu X., and Yang W. 2015. Kinetic and thermodynamic studies on the phosphate adsorption removal by dolomite mineral. Journal of Chemistry 1-8. https://doi.org/10.1155/2015/853105.
  46. Zafar M., Tiecher T., Castro Lima J., Schaefer G.L., Santanna M.A., and Santos D.R. 2016. Phosphorus seasonal sorption- desorption kinetics in suspended sediment in response to land use and management in the Guapore catchment, southern Brazil. Environmental Monitoring and Assessment 188(643). https://doi.org/1007/s10661-016-5650-3.
  47. Zhang L., Loaiciga H.A., Xu M., Du C., and Du Y. 2015. Kinetics and mechanisms of phosphorus adsorption in soils from diverse ecological zones in the source area of a drinking-water reservoir. International Journal Environment Research 12: 14312-14326. https://doi.org/3390/ijerph121114312.
  48. Zhang J.Z., and Huang X.L. 2011. Effect of temperature and salinity on phosphate sorption on marine sediments. Environmental Science and Technology 45(16): 6831-6837. https://doi.org/10.1021/es200867p.

 

CAPTCHA Image