دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران

2 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

این پژوهش با هدف بررسی تاثیر نوع هیدروکسید مضاعف لایه­ای (LDH) و نوع محلول زمینه بر واجذب B در محیط شبیه­سازی شده محلول خاک و نیز رهاسازی کاتیون­های ساختاری (Zn و Mn) در این محیط انجام شد. بدین منظور ابتدا هم­دماهای جذب B در محلول 03/0 مولار نیترات پتاسیم حاوی غلظت­های 25/0 تا 10 میلی­مولار B برای سه ترکیب Zn-Al LDH، Zn–Mn1–Al LDH (Mn/Zn برابر با  02/0 نسبت مولی) و Zn–Mn2–Al LDH (Mn/Zn برابر با 1/0 نسبت مولی) (به اختصار به­ترتیب Zn-Al، Zn–Mn1 و Zn–Mn2) بررسی شد. سپس واجذب B از این ترکیبات در بیش­ترین غلظت و تحت تاثیر محلول­های 03/0 مولار نیترات پتاسیم، 25/1 میلی­مولار اسید اگزالیک و 25/1 میلی­مولار اسید سیتریک اندازه­گیری شد. همچنین غلظت کاتیون­های Zn و Mn در محلول واجذب تعیین گردید. بر اساس نتایج، داده­های جذب و واجذب B در تمام LDHs برازش خوبی با معادله فرندلیچ نشان دادند. علاوه­براین، تاثیر کاربرد LDHs سه­تایی بر میزان جذب و واجذب B معنی­دار بود. بدین صورت که Zn–Mn1 و Zn–Mn2 در مقایسه با Zn-Al دارای جذب بیشتر (57/0-46/0 میلی­مول بر گرم) و واجذب کمتری در هر سه محلول زمینه (2/38-6/18 درصد) بودند. این امر می­تواند به متفاوت بودن مکانیسم جذب B در LDHs سنتز شده نسبت داده شود. اسیدهای آلی به دلیل ایجاد کی­لیت با کاتیون­های ساختاری LDHs و افزایش احتمال انحلال آن، سبب افزایش واجذب B و همچنین رهاسازی Zn و Mn در مقایسه با نیترات پتاسیم گردید. با توجه به رهاسازی آهسته B و همچنین Zn و Mn در شرایط شبیه­سازی شده محلول خاک، ممکن است LDHs قادر به تامین این سه عنصر غذایی برای گیاهان باشند که بررسی آن نیازمند مطالعه در شرایط واقعی خاک و در حضور گیاه می­باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Zn[Mn]-Al LDHs as Matrices for Release of B, Zn and Mn in A Simulated Soil Solution

نویسندگان [English]

  • H. Hatami 1
  • A. Fotovat 2

1 National Salinity Research Center (NSRC), Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

2 Professor, Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad

چکیده [English]

Introduction
Boron (B) has a dual effect on living systems, so that the concentration range within which B is changed from a nutrient to a pollutant is rather narrow. Although B plays essential roles in all living organisms, its long-term excessive uptake has adverse effects on either human beings or plants and animals. Furthermore, part of the B that can be used as fertilizer is highly soluble and easily leached into the soil profile leadsing to some problems such as decrease of fertilizer efficiency. Therefore, to improve agricultural productivity through its gradual uptake by plants, the increase of B adsorption in the soil solution is necessary. Many adsorbents have been used for the adsorption of B from aqueous solutions; however, layered double hydroxides (LDHs) have been considered as one of the most effective adsorbents as well as slow releaser fertilizers of inorganic anions such as nitrate, phosphate, etc. The formula of LDHs are typically denoted as [M1-x 2+M x 3+ (OH)2]x+ (An-) x/n .m(H2O), where M2+ and M3+ are divalent and trivalent cations, respectively, the significance of x is the molar ratio of M3+/(M3++ M2+) and An- is the intercalated anion. Although LDH materials are commonly prepared by combining two divalent and trivalent metals, more metals can be introduced in the brucite layer to achieve a large variety of composition and higher adsorption capacity. Stability of LDHs in soil can be affected by numerous factors (e.g. low molecular weight organic acids (LMWOAs)) leading to release of structural cations in addition to interlayer anion. However, there are scarce investigations that have evaluated the potential of ternary LDHs (e.g. Zn–Mn–Al LDH) in desorption of B (as interlayer anion) and release of Zn and Mn (as structural anions) in a simulated soil solution. Therefore, the objectives of this study were, i) to compare the desorption of B capacity of binary LDH (Zn–Al LDH) and ternary LDH (Zn–Mn–Al LDH) in the simulated soil solution, and ii) to investigate the effect of three different electrolytes (potassium nitrate, oxalic acid, and citric acid) on the release of Zn and Mn from synthesized LDHs.
Materials and methods
 A modified urea hydrolysis method was employed to synthesize Zn–Al and Mn-substituted Zn–Al LDHs with Zn(+Mn)/Al molar ratio of 2. Herein the contents of Mn with respect to Zn corresponded to 2% and 10% molar ratio. Accordingly, the synthesized materials denoted as Zn–Al, Zn–Mn1 and Zn–Mn2 for the samples without Mn, with 2 and 10 mol% Mn with respect to Zn content. For investigation of B desorption at a concentration of 10 mM, 15 mL from equilibrium solutions were substituted with 15 mL of 0.03 M KNO3 and shaken for 240 min. Substitution was repeated four times and A modified urea hydrolysis method was employed to synthesize Zn–Al and Mn-substituted Zn–Al LDHs with Zn (+Mn)/Al molar ratio of 2. Herein the contents of Mn with respect to Zn corresponded to 2% and 10% molar ratio. Accordingly, the synthesized materials denoted as Zn–Al, Zn–Mn1 and Zn–Mn2 for the samples without Mn, with 2 and 10 mol% Mn with respect to Zn content. For investiigatigatingon of B desorption at a concentration of 10 mM, 15 mL from equilibrium solutions were substituted with 15 mL of 0.03 M KNO3 and shaken for 240 min. Substitution was repeated four times and B concentrations in extracts were measured by Azomethine-H method. Furthermore, the supernatant Zn and Mn concentrations were determined by GF-AAS (PG 900). This process was repeated for 1.25 mM oxalic acid and 1.25 mM citric acid to study the effect of these compounds on B desorption as well as release of Zn and Mn. B concentrations in extracts were measured by Azomethine-H method. Furthermore, the supernatant Zn and Mn concentrations were determined by GF-AAS (PG 900). This process was repeated for 1.25 mM oxalic acid and 1.25 mM citric acid to study the effect of these compounds on B desorption as well as release of Zn and Mn.
Results and Discussion
The adsorption and desorption isotherm were carried out to describe the distribution of B between the liquid and adsorbent. The isotherm data of synthesized LDHs were matched with Freundlich model. The values of 1/n in this model were found between 0 and 1 for all LDHs indicating favorable sorption of B on these compounds. The highest adsorption was observed for ternary LDHs (particularly Zn–Mn2) due to their higher specific surface area and also due to the ion exchange mechanism in combination with surface adsorption. However, the results showed that the percentages of B desorption by potassium nitrate, oxalic acid and citric acid were lower for Zn–Mn1 (19.4, 29.1 and 38.2%, respectively) and Zn–Mn2 (18.6, 28.2 and 35.9 %, respectively) than Zn–Al (30.8, 41.2 and 46.2%, respectively). This observation suggests that the type of LDH, B adsorption mechanism and background electrolyte can affect the amount of B desorption. Furthermore, after 4 successive desorption cycles, the concentration of Zn and Mn increased in the supernatants (particularly in organic acid electrolytes) suggesting dissolution mechanism possibility happened for the studied LDHs. Among the background electrolytes, citric acid was the most effective compound in releasing Zn and Mn, followed by oxalic acid and potassium nitrate. A reason for this such observations could be that with respect to chemical structure, citric acid by three carboxyl groups can form more chelate rings compared to oxalic acid, which contain two carboxyl groups. Therefore, it seems that B containing Zn–Mn–Al LDH may have potential to be used as a slow release fertilizer in soils to supply three essential elements, including B, Zn and Mn simultaneously. However, further studies are required to support such a hypothesis.
 

کلیدواژه‌ها [English]

  • Adsorption-desorption isotherms
  • Boron
  • Layered double hydroxides
  • Organic acids
  1. Ay, A.N., Zumreoglu-Karan, B., & Temel, A. (2007). Boron removal by hydrotalcite-like, carbonate-free Mg–Al–NO3-LDH and a rationale on the mechanism. Microporous and Mesoporous Materials 98: 1-5. https://doi.org/10.1016/j.micromeso.2006.08.004.
  2. Ay, A.N., Zumreoglu-Karan, B., Temel, A., & Mafra, L. (2011). Layered double hydroxides with interlayer borate anions: A critical evaluation of synthesis methodology and pH-independent orientations in nano-galleries. Appllied Clay Science 51: 308-316. https://doi.org/10.1016/j.clay.2010.12.015.
  3. Azimzadeh, Y., Najafi, N., Reyhanitabar, A., Oustan, S., & Khataee, A. (2021). Effects of phosphate loaded LDH-biochar/hydrochar on maize dry matter and P uptake in a calcareous soil. Archives of Agronomy and Soil Science 67(12): 1649-1664. https://doi.org/10.1080/03650340.2020.1802012.
  4. Benício, L.P.F., Constantino, V.R.L., Pinto, F.G., Vergütz, L., Tronto, J., & Da Costa, L.M. (2017). Layered double hydroxides: new technology in phosphate fertilizers based on nanostructured materials. ACS Sustainable Chemistry & Engineering 5(1): 399–409. https://doi.org/10.1021/acssuschemeng.6b01784.
  5. Bharali, D., & Deca, R.C. (2017). Preferential adsorption of various anionic and cationic dyes from aqueous solution over ternary CuMgAl layered double hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 525: 64-76. http://doi.org/10.1016/j.colsurfa.2017.04.060.
  6. Cao, Y., & Guo Q. (2013). Boron removal from water using takovite: adsorption vs. anion exchange. Advanced Materials Research 781-784: 2150-2156. https://doi.org/10.4028/www.scientific.net/AMR.781-784.2150.
  7. Castro, G.F., Ferreira, J.A., Eulálio, D., de Souza, S.J., Novais, S.V., Novais, R.F., Pinto, F.G., & Tronto, J. (2018). Layered double hydroxides: matrices for storage and source of boron for plant growth. Clay Minerals 53(01):1-27. https://doi.org/10.1180/clm.2018.6.
  8. Cheng, X., Huang, X., Wang, X., Zhao, B., Chen, A., & Sun, D. (2009). Phosphate adsorption from sewage sludge filtrate using zinc–aluminum layered double hydroxides. Journal of Hazardous Materials 169: 958–964. http://doi:10.1016/j.jhazmat.2009.04.052.
  9. Chitrakar, R., Tezuka, S., Hosokawa, J., Makita, Y., Sonoda, A., Ooi, K., & Hirotsu, T. (2010). Uptake properties of phosphate on a novel Zr-modified Mg-Fe-LDH(CO3). Journal of colloid and interface science 349: 314-320. https://doi.org/10.1016/j.jcis.2010.05.068.
  10. Delazare, T., Ferreira, L.P., Ribeiro, N.F.P., Souza, M.M.V.M., Campos, J.C., & Yokoyama, L. (2014). Removal of boron from oilfield wastewater via adsorption with synthetic layered double hydroxides. Journal of Environmental Science and Health, Part A 49: 923-932. http://doi.org/10.1080/10934529.2014.893792.
  11. Essington, M.E. (2004). Soil and Water Chemistry: An Integrative Approach, 1st ed. CRC Press, Boca Raton, FL.
  12. Everaert, M., Warrinnier, R., Baken, S., Gustafsson, J.P., De Vos, D.E., & Smolders, E. (2016). Phosphate exchanged Mg-Al layered double hydroxides: a new slow release phosphate fertilizer. ACS Sustainable Chemistry and Engineering 4(8): 4280–4287. http://doi.org/10.1021/acssuschemeng.6b00778.
  13. Ferreira, O.P., Moraes, S.G., Duran, N., Cornejo, L., & Alves, O.L. (2006). Evaluation of boron removal from water by hydrotalcite-like compounds. Chemosphere 62: 80-88. http://doi.org/10.1016/j.chemosphere.2005.04.009.
  14. Gao, Z., Xie, S., Zhang, B., Qiu, X., & Chen, F. (2017). Ultrathin Mg-Al layered double hydroxide prepared by ionothermal synthesis in a deep eutectic solvent for highly effective boron removal. Chemical Engineering Journal 319: 108-118. https://doi.org/10.1016/j.cej.2017.03.002.
  15. Goh, K.-H., Lim, T.T., & Dong, Z. (2008). Application of layered double hydroxides for removal of oxyanions: A review. Water Research 42: 1343-1368. http://doi.org/10.1016/j.watres.2007.10.043.
  16. Goh, K.H., Lim, T.T., Banas, A., & Dong, Z. (2010). Sorption characteristics and mechanisms of oxyanions and oxyhalides having different molecular properties on Mg/Al layered double hydroxide nanoparticles. Journal of Hazardous Materials 179: 818–827. https://doi.org/10.1016/j.jhazmat.2010.03.077.
  17. Guo, Q., Zhang, Y., Cao, Y., Wang, Y., & Yan, W. (2013). Boron sorption from aqueous solution by hydrotalcite and its preliminary application in geothermal water deboronation. Environmental Science and Pollution Research 20: 8210-8219. https://doi.org/10.1007/s11356-013-1796-5.
  18. Halajnia, A., Oustan, S., Najafi, N., Khataee, A.R., & Lakzian, A. (2016). Effects of Mg-Al layered double hydroxide on nitrate leaching and nitrogen uptake by maize in a calcareous soil. Communications in Soil Science and Plant Analysis 47: 1162–1175. http://doi.org/10.1080/00103624.2016.1165825.
  19. Hatami, H., Fotovat, A., & Halajnia, A. (2018). Comparison of adsorption and desorption of phosphate on synthesized Zn-Al LDH by two methods in a simulated soil solution. Applied Clay Science 152: 333–341. http://doi.org/10.1016/j.clay.2017.11.032.
  20. Hatami, H., Fotovat, A., & Halajnia, A. (2020). Adsorption of Boron from a Simulated Soil Solution Using Zn–Al and Mn-Doped Zn–Al Layered Double Hydroxides. Colloid Journal 82(6): 735–745. http://doi.org/10.1134/S1061933X20060058.
  21. Hatami, H., Fotovat, A., & Halajnia, A. (2021). Availability and Uptake of Phosphorus and Zinc by Maize in the Presence of Phosphate-Containing Zn-Al-LDH in a Calcareous Soil. Eurasian Soil Science 54(3): 431–440. http://doi.org/10.1134/S1064229321030066.
  22. Inayat, A., Klumpp, M., & Schwieger, W. (2011). The urea method for the direct synthesis of ZnAl layered double hydroxides with nitrate as the interlayer anion. Applied Clay Science 51: 452–459. http://doi.org/10.1016/j.clay.2011.01.008.
  23. Jiang, J.-Q., Xu, Y., Quill, K., Simon, J., & Shettle, K. (2007). Laboratory Study of Boron Removal by Mg/Al Double-Layered Hydroxides. Industrial & Engineering Chemistry Research 46: 4577-4583.
  24. Kameda, T., Oba, J., & Yoshioka, T. (2015). New treatment method for boron in aqueous solutions using Mg–Al layered double hydroxide: Kinetics and equilibrium studies. Journal of Hazardous Materials 293: 54–63. http://doi.org/10.1016/j.jhazmat.2015.03.015.
  25. López-Rayo, S., Imran, A., Hansen, H.C.B., Schjoerring, J., & Magid, J. (2017). Layered double hydroxides: potential release-on-demand fertilizers for plant zinc nutrition. Journal of Agricultural and Food Chemistry 65(40): 8779–8789. http://doi.org/10.1021/acs.jafc.7b02604.
  26. 25. Novillo, C., Guaya, D., Allen-Perkins Avenqiudaño, A., Armijos, C., Cortina, J.L., & Cota, I. (2014). Evaluation of phosphate removal capacity of Mg/Al layered double hydroxides from aqueous solutions. Fuel 138: 72–79. http://doi.org/10.1016/j.fuel.2014.07.010.
  27. Shafigh, M., Hamidpour, M., & Furrer, G. (2019). Zinc release from Zn-Mg-Fe(III)-LDH intercalated with nitrate, phosphate and carbonate: The effects of low molecular weight organic acids. Applied Clay Science 170: 135–142. https://doi.org/10.1016/j.clay.2019.01.016.
  28. Songkhum, P., Wuttikhun, T., Chanlek, N., Khemthong, P., & Laohhasurayotin, K. (2018). Controlled release studies of boron and zinc from layered double hydroxides as the micronutrient hosts for agricultural application. Applied Clay Science 152: 311-322. https://doi.org/10.1016/j.clay.2017.11.028.
  29. Woo, M.A., Kim, T.W., Paek, M., Ha, H., Choy, J., & Hwang, S. (2011). Phosphate-intercalated Ca–Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate. Journal of Solid State Chemistry 184: 171-176. https://doi.org/10.1016/j.jssc.2010.11.003.
  30. Zhang, H., & Selim, H.M. (2005). Kinetics of arsenate adsorption–desorption in soils. Environmental Science & Technology 39: 6101–6108. https://doi.org/10.1021/es050334u.
CAPTCHA Image