دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه بیرجند

2 استاد گروه آبیاری وزهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.

3 دانشگاه شهیدچمران اهواز

4 دانشگاه صنعتی جندی شاپور دزفول

چکیده

تخمین دقیق تبخیر و تعرق نقش مهمی در بیلان آب در سطح حوضه، دشت و در مقیاس منطقه‌ای برای بهبود و برنامه‌ریزی مدیریت منابع آب وکشاورزی ایفا می کند. روش‌های مختلفی مانند نسبت باون و لایسیمتر برای اندازه‌گیری تبخیر و تعرق وجود دارند ولی استفاده از این روش‌ها به دلیل اندازه‌گیری نقطه‌ای تبخیر و تعرق، در سطح یک منطقه وسیع، وقت و هزینه زیادی را بکار می‌گیرد. بدین منظور در این پژوهش برای تعیین تبخیر و تعرق واقعی از دو مدل اگروهیدرولوژیکی SWAP و مدل سنجش از دور SEBAL با کمک تصاویر مودیس و داده‌های مزارع فاروب و سلیمانی واقع در دشت نیشابور استفاده شده است. برای بدست آوردن پارامترهای بیلان آب مورد نیاز مدل SWAP از شیوه مهندسی معکوس استفاده شده است. با وجود اینکه مدل SWAP مقدار آبیاری و تبخیر و تعرق را با تفکیک زمانی بالا تعیین کند، الگوریتم SEBAL می‌تواند تغییرات محصول مانند شاخص سطح برگ، شاخص NDVI و تبخیر و تعرق را با تفکیک مکانی بالا تخمین بزند. نتایج مدل SWAP با داده‌های اندازه‌گیری شده رطوبت خاک واسنجی و صحت سنجی شده است. مقادیر خطای RMSE برابر 635/0 و 674/0 میلی متر بر روز و خطای MAE برابر 15/0 و 53/0 میلی متر بر روز و ضریب تبیین (R2) 915/0 و 964/0 حاصل از مقایسه نتایج الگوریتم SEBAL و مدل SWAP برای دو مزرعه نشان می‌دهد دو مدل تفاوت معنی‌داری با هم ندارند.

کلیدواژه‌ها

عنوان مقاله [English]

Estimation of Actual Evapotranspiration Using an Agro-Hydrological Model and Remote Sensing Techniques

نویسندگان [English]

  • mostafa yaghoobzadeh 1
  • Saeid Boroomand Nasab 2
  • Zahra Izadpanah 3
  • Hesam Seyyed Kaboli 4

1 Assistant Professor, Department of Science and Water Engineering

2 Professor, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran

3 Shahid Chamran University of Ahvaz

4 Jondishapur University of technology, Dezful

چکیده [English]

Introduction: Accurate estimation of evapotranspiration plays an important role in quantification of water balance at awatershed, plain and regional scale. Moreover, it is important in terms ofmanaging water resources such as water allocation, irrigation management, and evaluating the effects of changing land use on water yields. Different methods are available for ET estimation including Bowen ratio energy balance systems, eddy correlation systems, weighing lysimeters.Water balance techniques offer powerful alternatives for measuring ET and other surface energy fluxes. In spite of the elegance, high accuracy and theoretical attractions of these techniques for measuring ET, their practical use over large areas might be limited. They can be very expensive for practical applications at regional scales under heterogeneous terrains composed of different agro-ecosystems. To overcome aforementioned limitations by use of satellite measurements are appropriate approach. The feasibility of using remotely sensed crop parameters in combination of agro-hydrological models has been investigated in recent studies. The aim of the present study was to determine evapotranspiration by two methods, remote sensing and soil, water, atmosphere, and plant (SWAP) model for wheat fields located in Neishabour plain. The output of SWAP has been validated by means of soil water content measurements. Furthermore, the actual evapotranspiration estimated by SWAP has been considered as the “reference” in the comparison between SEBAL energy balance models.
Materials and Methods: Surface Energy Balance Algorithm for Land (SEBAL) was used to estimate actual ET fluxes from Modis satellite images. SEBAL is a one-layer energy balance model that estimates latent heat flux and other energy balance components without information on soil, crop, and management practices. The near surface energy balance equation can be approximated as: Rn = G + H + λET
Where Rn: net radiation (Wm2); G: soil heat flux (Wm2); H: sensible heat flux (Wm2); and λET: latent heat flux (Wm2). Simulations were carried out by SWAP model for two different sites in Faroub and Soleimani fields. The SWAP is a physically based one-dimensional model which simulates vertical transport of water flow, solute transport, heat flow and crop growth at the field scale level. The period of simulation covered the whole wheat growing season (from 1st of December2008 to 30th of July2009. 16 MODIS images was used to determine evapotranspiration during wheat growing season. Inverse modeling of evapotranspiration (ET) fluxes was followed to calibrate the soil hydraulic. While SWAP model has the advantage of producing the right amount of irrigation and evapotranspiration at high temporal resolution, SEBAL can estimate crop variables like leaf area index, NDVI index, net radiation, Soil heat flux, Sensible heat flux and evapotranspiration athigh spatial resolution.
Results and Discussion: Actual and potential evapotranspiration were estimated for SWAP Model during the whole wheat growing season around669.5 and 1259.6 mm for Farub field and 583.7 and 1331.2 mm for Soleimani field, respectively. In contrast with NDVI and net radiation,spatial distribution of SEBAL parameters indicated that soil heat flux, sensible heat flux, and surface temperature of land have the same behavior. At the planting date, evapotranspiration was low and about 1 mm/day, but at the peak of plant growth, it was about 9 mm/day. Moreover, evapotranspiration declined at late growing season to about 3 mm/ day. SWAP model has been calibrated and validated with meteorological data and the data of field measurements of soil moisture. The amount of RMSE of 0.635 and 0.674 (mm/day) and MAE of 0.15 and 0.53 (mm/day) and also coefficient of determination (R2) of 0.915 and 0.964 obtained from comparison of SEBAL algorithm with SWAP model for Farub and Soleimani fields showed that no significant differences was seen between results of two models.
Conclusion: The present study supports the use of SEBAL as the most promising algorithm that requires minimum input data of ground based variables. Results of comparison of SEBAL and SWAP model showed that SEBAL can be a viable tool for generating evapotranspiration maps to assess and quantify spatiotemporal distribution of ET at large scales. Also, it feels that SEBAL and SWAP models can be applied in a wide variety of irrigation conditions without the need for extensive field surveys. This helps significantly in identifying performance indicators and water accounting procedures in irrigated agriculture, and to obtain their likely ranges.

کلیدواژه‌ها [English]

  • Actual Evapotranspiration
  • MODIS images
  • SEBAL algorithm
  • SWAP model
1- Akbari M., and Dehghani-Sanij Heydari N. 2008. Estimation of irrigated area, evapotrans- piration and irrigation management using Remote sensing. Iranian Journal of lrrigation and Drainage, 2(1): 43-52. (in Persian with English abstract)
2- Bastiaanssen W.G.M., Menenti M., Feddes R.A., and Holtslag A.A.M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL), part 1: formulation. Journal of Hydrology, 212-213: 198–212.
3- Bastiaanssen W.G.M., Noordman E.J.M., Pelgrum H., Davids G., and Allen R.G. 2005. SEBAL for spatially distributed ET under actual management and growing conditions. Journal of Irrigation. Drainage Engineering, 131(1): 85–93.
4- Chemin Y., Platonov A., UI-Hassan M., and Abdullaev I. 2004. Using remote sensing data for water depletion assessment at administrative and irrigation-system levels: Case study of the Ferghana province of Uzbekistan. Agricultural Water Management. 64(3): 183–196.
5- Dinesh K.G., Purushothaman B.M., Vinaya M.S., and Suresh Babu S. 2014. Estimation of Evapotranspiration using MODIS Sensor Data in Udupi District of Karnataka, India. International Journal of Advanced Remote Sensing and GIS, 3(1): 532-543.
6- Droogers P., Immerzeela W.W., and Lorite I.J. 2010. Estimating actual irrigation application by remotely sensed evapotranspiration observations. Agricultural Water Management, 97: 1351-1359.
7- Gao Y., Long D., and Li Z. 2008. Estimation of daily actual evapotranspiration from remotely sensed data under complex terrain over the upper Chao river basin in North China. International Journal of Remote Sensing. 29(11): 3295–3315.
8- Kimura R., Baib L., Fanc J., Takayamaa N., and Hinokidanid O. 2007. Evapo-transpiration estimation over the river basin of the Loess Plateau of China based on remote sensing. Journal of Arid Environmental, 68(1): 53–65.
9- Kiptala J.K., Mohamed Y., Mul M.L., and Van der Zaag P. 2013. Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa. Water Resources Research, 49: 12. 8495–8510.
10- Matin M.A., and Bourque C.P. 2013. Assessing spatiotemporal variation in actual evapotranspiration for semi-arid watersheds in northwest China: Evaluation of two complementary-based methods. Journal of Hydrology, 486: 455–465.
11- Minacapilli M., Agnese C., Blanda F., Cammalleri C., Ciraolo G., D’Urso G., Iovino M., Pumo D., Provenzano G., and Rallo G. 2009. Estimation of actual evapotranspiration of Mediterranean perennial crops by means of remote-sensing based surface energy balance Models. Hydrology and Earth System Sciences, 13: 1061-1074.
12- Mohamadi S., Mirlatifi S.M., and Akbari M. 2014. Sugarcane irrigation scheduling using a combination of remote sensing data and SWAP model in the sugarcane agro-industry Mirza Kochak Khan of Khuzestan. Journal of Water Research in Agriculture, 28(1): 39-50. (in Persian)
13- Morse A., Tasumi M., Allen R.G., and Kramber W.J. 2000. Application of the SEBAL methodology for estimating consumptive use of water and stream flow depletion in the Bear River basin of Idaho through remote sensing. Final Rep., Phase I, Submitted to The Raytheon Systems Company, Earth Observation System Data and Information System Project, by Idaho Department of Water Resources and University of Idaho.
14- Sanaei Nejad S.H., Noori S., and Hasheminia S.M. 2011. Estimation of Evapotranspiration Using Satellite Image Data in Mashhad area. Journal of Water and Soil, 25(3): 540-547. (in Persian with English abstract)
15- Singh U.K., Ren L., and Kang S. 2010. Simulation of soil water in space and time using an agro hydrological model and remote sensing techniques. Agricultural Water Management, 97(8): 1210-1220.
16- Van Dam J.C., Huygen J., Wesseling J.G., Feddes R.A., Kabat P., Van Waslum P.E.V., Groenendjik P., and Van Diepen C.A. 1997. Theory of SWAP version 2.0: simulation of water flow and plant growth in the soil–water–atmosphere–plant environment. Wageningen Agricultural University and DLO Winand Staring Centre, Wageningen, The Netherlands.
17- Yang X., Ren L., Jiao D., Yong B., Jiang S., Song S. 2013. Estimation of Daily Actual Evapotranspiration from ETM+ and MODIS Data of the Headwaters of the West Liaohe Basin in the Semiarid Regions of China. Journal of Hydrology Engineering, 18: 11.1530–1538.
CAPTCHA Image