دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی، واحد کرمان

2 دانشگاه شهید باهنر کرمان

چکیده

هیدروکربن های نفتی آلاینده های گسترده ای هستند که از طریق انتقال نفت خام، نگهداری، حوادث نشت نفتی و فرآیندهای تصفیه در پالایشگاه ها وارد خاک می گردند. آلودگی نفتی دارای اثرات اکولوژیکی بر روی خاک می باشد بطوری که ترکیب و تنوع جامعه میکروبی را بر هم زده و اثراتی نیز بر روی فعالیت ریزجانداران و آنزیم های خاک دارد. در این تحقیق جهت مطالعه اثر نفت خام بر روی جمعیت میکروبی خاک، دو نوع خاک متفاوت شامل خاک های صنعتی (مجاور تأسیسات نفتی و پتروشیمی شیراز) و جنگل تهیه و نمونه برداری شد و شش نوع میکروکازم طراحی گردید. هر خاک دارای سه میکروکازم با شرایط متفاوت شامل بدون آلودگی، آلوده به نفت و آلوده به نفت همراه با مواد غذایی نیتروژن و فسفر بود. شاخص هایی همچون جمعیت باکتری های هتروتروف، جمعیت باکتری های تجزیه کننده، آنزیم دهیدروژناز و میزان تجزیه نفت در مورد هر میکروکازم در یک دوره زمانی 120 روزه بطور جداگانه سنجش گردید. نتایج این تحقیق نشان داد که بالاترین میزان باکتری های هتروتروف مربوط به خاک جنگل با ارزش 108 × 8 می باشد. بطور کلی تعداد باکتری های تجزیه کننده در خاک ها بطور قابل توجهی کمتر از تعداد کل باکتری های هتروتروف در خاک ها بود. کمیت باکتری های تجزیه کننده تا روز 60 آزمایش بصورت کاهشی و پس از آن تا انتهای آزمایش افزایش داشت. در بین سه نوع مختلف میکروکازم، میکروکازم آلوده به نفت همراه با افزودن منابع نیتروژن و فسفر بالاترین فعالیت آنزیمی دهیدروژناز را دارد. از لحاظ تجزیه زیستی نفت خام در خاک، بیشترین میزان تجزیه مربوط به خاک در میکروکازم صنعتی (95 %) بود. تحلیل آماری داده ها نشان داد که یک ارتباط معنی دار بین تعداد کل باکتری های هتروتروف که با روش MPN سنجیده شده با سایر شاخص های مورد بررسی وجود دارد. با بکارگیری نتایج حاصله از این تحقیق می توان بر حسب نوع خاک راهکارهای مناسبی جهت احیای زیستی آن ها پیشنهاد نمود.

کلیدواژه‌ها

عنوان مقاله [English]

Comparative Study of Crude Oil Contamination Effect on Industrial and Forest Soil Microbial Community

نویسندگان [English]

  • Nasrin Ansari 1
  • Mehdi Hassanshahian 2
  • MohammadReza Khoshro 1

1 Kerman branch, Islamic Azad University

2 Shahid Bahonar University of Kerman

چکیده [English]

Introduction: Petroleum hydrocarbons are widespread pollutant that enters to soil by some pathwayssuch as: Transportation of crude oil, conservation of oil compounds, crude oil spill and treatment process on refineries. Oil pollution has some ecological effect on soil that disturbed composition and diversity of microbial community. Also this pollution has some effects on microbial activity and enzymes of soil. Forests ecosystems may be polluted with petroleum hydrocarbons via different ways such as transportation and spill of crude oil from resource of petroleum storage. Industrial soil defined as the soils that located in industrial area such as petrochemical plant, mine, chemical factories and etc. These soils always contaminated to many pollutant such as: oil, diesel and heavy metals. These pollutants have some effects on the texture of the soil and microbial community. The aim of this research is to understand the effect of oil pollution on two different soils.
Material and Methods: In order to evaluate the effect of crude oil on soil microbial community, two different soil samples were collected from industrial and forest soils. Six microcosms were designed in this experiment. Indeed each soil sample examined inthree microcosms asunpolluted microcosm, polluted microcosm, and polluted microcosm with nutrient supply of Nitrogen and PhosphorusSome factors were assayed in each microcosm during 120 days of experiment. The included study factors were: total heterotrophic bacteria, total crude oil degrading bacteria, dehydrogenase enzyme and crude oil biodegradation. For enumeration of heterotrophic bacteria nutrient agar medium was used. In this method serial dilutions were done from each soil and spread on nutrient agar medium then different colonies were counted. For enumeration of degrading bacteria Bushnel-Hass (BH) medium were used. The composition of this medium was (g/lit): 1 gr KH2PO4, 1gr K2HPO4, 0.2 gr MgSO4.7H2O, 0.02 gr CaCl2, 1 gr NH4NO3, and two drops of FeCl3 60% , the pH was 7. The carbon source of this medium was crude oil (1%). In MPN method microplates (24 well) were utilized and turbidity was calculated as positive index.
Results and Discussion: The results of this study showed that the highest quantity of heterotrophic bacteria was related to forest soil (8 × 108). The quantities of degradative bacteria significantly were lower than heterotrophic bacteria in all soil microcosms. This result may be expected because heterotrophic bacteria can use other carbon sources instead of crude oil such as organic carbon, suger and some nutrients that exist in the soil, but degrading bacteria have some limit in the use of organic carbons and only capable to use crude oil hydrocarbons. Sothe quantity of these bacteria is lower than heterotrophic bacteria. The quantity of degradative bacteria have decrement pattern until 60th day of experiment but after this day these bacteria have increment pattern. This result can be interpreted as from beginning of experiment until 60th day of experiment the bacteria adapted to toxic effect of crude oil and after this time the quantity of bacteria increased and have ability to use pollutant in the soil. The best deydrogenase activity between different microcosms related to polluted microcosm with nutrient. This result confirms that nitrogen and phosphorus can decrease the damage effect of crude oil on soil microbial community. The mechanism of this attenuation of toxicity effect of crude oil on microbial community can be related to enhance bioavailability of essential elements for bacteria in the soil. So after oil pollution of an area, soil supply upto nitrogen and phosphorus demand must be mentioned as a necessary practice to decrease the toxicity effect of pollutants. The highest biodegradation of crude oil in all studied soils belonged to industrial microcosm (95 %). It can be explained by adaptation theory because the bacteria in the industrial soil were better adapted to different pollutants and these bacteria have more capability for biodegradation of crude oil. By this reasonthe rate of degradation of crude oil in the industrial soil were higher than forest soil. Statistical analysis of the results showed that there was a significant correlation between MPN quantity of heterotrophic bacteria and other assayed factors. Also, forest soil seemed to have significant difference with other soils.
Conclusion: according to the obtained results by this study, it can be possibly proposed appropriate strategies for bioremediation of different studied soil types. The selection of best bioremediation strategies belong to specific types of soil. Just as this research confirmed that the type of soil plays significant role in the percentage of degradation.

کلیدواژه‌ها [English]

  • Biodegradation
  • Crude oil
  • Microcosm
  • Pollution
  • Soil
1- Alef K., and Nannipieri P. 1995. Methods in Applied Soil Microbiology and Biochemistry. Academic press, Londen.
2- Amadi A., Samuel D., and Anthony N. 1996. Chronic effects of oil spill on soil properties and microflora of a rainforest ecosystem in Nigeria, Water, Air, and Soil Pollution, 86: 1- 11.
3- Andreoni V., Cavalca L., Rao M. A., Nocerino G., Bernasconi S., Amico M., and Colombo L. 2004. Bacterial communities and enzyme activities of PAHs polluted soils, Chemosphere, 57: 401- 412.
4- Atlas M. 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective, Applied and Environmental Microbiology, 45: 180- 209.
5- Barathi S., and Vasudevan N. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from petroleum contaminated soil, Environmental International, 26: 413- 416.
6- Bragg J.R., Prince R.C., Harner E.J., and Atlas R.M. 1994. Effectiveness of bioremediation for the Exxon Valdez oil spill, Nature, 368: 413- 418.
7- Carl E., and Cerniglia B. 1992. Biodegradation of polycyclic aromatic hydrocarbons, Biodegradation, 3: 351- 368.
8- Del Arco J.P., and De Franca F.P. 2001. Influence of oil contamination levels on hydrocarbon biodegradation in sandy sediment, Environment Pollution, 110: 515- 519.
9- Delille D., and Delille B. 2000. Field observations on the variability of crude oil impact on indigenous hydrocarbon-degrading bacteria from sub-Antarctic intertidal sediments, Marine Environmental Research, 49: 403- 417.
10- Delille D., and Coulon F. 2008. Comparative mesocosm study of biostimulation efficiency in two different oil-amended sub-Antarctic soils, Microbial Ecology, 56: 243- 252.
11- Flavia F., Evans S., Rosado G. V., Sebasti S., Renata C., Pedro L. O., and van E. 2004. Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiology Ecology, 49: 295– 305.
12- Gianfreda L., Antonietta Rao M., Piotrowska A., palumbo G., and Colombo C. 2004. Soil enzyme activities as affected by anthrogenicalterations: intensive agricultural practice and organic pollution, Science of the Total Environment, 341: 265- 279.
13- Ives A. R., Foufopoulos J., Klopfer E. D., Klug J. L., and Palmer T. M. 1996. Bottle or big-scale studies: how do we do ecology, Ecology, 77: 681- 685.
14- Kasai Y., Kishira H., Sasaki T., Syutsubo K., Watanabe K., and Harayama S. 2002. Predominant growth of Alcanivorax strains in oil-contaminated and nutrient supplemented sea water, Environmental Microbiology, 4: 141- 147.
15- Labud V., Garcia C., and Hernandez T. 2007. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil, chemosphere, 66:1863- 1810.
16- Leahy A., and Colwell R. 2010. Microbial degradation of hydrocarbons in the environment, Microbiology and Molecular Biology Review, 54: 305- 315.
17- Lenson P. 1992. Forest Soil Biology: Impossible Challenge or Open Market? Responses of Forest Ecosystems to Environmental Changes, 23: 165- 175.
18- Li Z. Y., Kravchenko I., Xu H., and Zhang C. 2007. Dynamic changes in microbial activity and community structure during biodegradation of petroleum compounds: A laboratory experiment, Journal of Environmental Science, 19: 1003– 1013.
19- Mathew M., and Obbard J. P. 2001. Optimisation of the dehydrogenase assay for measurement of indigenous microbial activity in beach sediments contaminated with petroleum, Biotechnology Letters, 23: 227– 230.
20- Okerentugba P.O., and Ezeronye O.U. 2003. Petroleum degrading potentioals of single and mixed microbial cultures isolatedfrom rivers and refinery effluents in Nigeria, African Journal of Biotechnology, 2(9): 288- 292.
21- Rahman K. S. M., Thahira-Rahman J., Lakshmanaperumalsamy P., and Banat I. M. 2004. Towards efficient crude oil degradation by a mixed bacterial consortium, Bioresource Technology, 85: 257– 261.
22- Ramakrishnan B., Megharaj M., Venkateswarlu K., Sethunathan N., and Naidu B. 2011. Mixtures of environmental pollutants: Effects on microorganisms and their activities in soils, Environmental Contamination and Toxicology, 10: 978-1007.1, 4419- 8011.
23- Riffaldi R., Levi-minzi R., Cardelli R., Palumbo S., and Saviozzi A. 2006. Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil, Water, Air and Soil Pollution, 170: 3– 15.
24- Schafer H., Laetitia B., Claude C., Philippe L., Pierre S., Pukall E., and Gerard, M. 2001. Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in the genetic diversity of bacterial populations, FEMS Microbiology Ecology, 34: 243- 253.
25- Vandergast C. J., Whiteley A. S., and Thompson I. P. 2004. Temporal dynamics and degradation activity of a bacterial inoculums for treating waste metal working fluid, Environmental Microbiology, 6: 254- 263.
26- Wrenn B. A., and Venosa A. D. 1996. Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most probable number procedure, Canadian Journal of Microbiology, 42: 252- 258.
27- Weigand, H., Totsche G., and Huwe B. 2001. PAH mobility in contaminated industrial soils: a Markov chain approach to the spatial variability of soil properties and PAH levels, Geoderma, 102: 371– 389.
28- Xu R., and Obbard J. P. 2003. Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil contaminated beach sediments, Journal of Environmental Quality, 32: 1234- 1243.
29- Zhou J., Bruns M. A., and Tiedje J. M. 1996. DNA recovery from soils of diverse composition, Applied and Environmental Microbiology, 62: 316– 320.
CAPTCHA Image