دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

چکیده

هوادیدگی کانی‌های خاک، خاستگاه بسیاری از عناصر غذایی ضروری رشد گیاه مانند پتاسیم هستند. کانی‌ های میکایی خاستگاه اصلی برآورد پتاسیم در خاک های کشورمان هستند. این پژوهش با هدف جداسازی باکتری‌های حل کننده پتاسیم از ریزوسفر گندم و بررسی توانایی این باکتریها در بهره گیری از پتاسیم ساختاری کانی‌های مسکوویت و ورمی‌کولیت انجام شد. این پژوهش در زیستگاه درون شیشه‌ای با آرایش فاکتوریل در قالب طرح کاملاً تصادفی در 3 تکرار انجام شد. فاکتورهای آزمایش سه سطح باکتری (شاهد بدون مایه زنی، و مایه زنی با باکتری1 و 2) و چهار گونه تیمار کانی پتاسیم (مسکویت، ورمیکولیت، مسکویت+K2HPO4 ، ورمیکولیت + K2HPO4) بود. در پایان دوره کشت، بخش هوایی گیاه برداشت و به روش خاکستر خشک پتاسیم آن به کمک فروغ سنج اندازه گیری شد. همچنین صفات وزن تر و خشک اندام هوایی و ریشه، بلندی گیاه و درازی ریشه اندازه-گیری شد. این بررسی نشان داد که پیامد مایه زنی دو باکتری برهمه ویژگی‌های اندازه‌گیری شده در سطح یک درصد معنی‌دار است. همه ویژگی های یاد شده در بودن Bacillus subtilis و کانی ورمی‌کولیت بالاترین اندازه‌ها را داشتند. اندازه پتاسیم جذب شده در گیاه به گونه معنی‌داری وابسته به بستر کشت گیاه بود. اندازه پتاسیم جذب شده در گیاه، در سطح یک درصد به گونه معنی‌داری وابسته به باکتری حل‌کننده پتاسیم بود. بیش‌ترین غلظت پتاسیم اندام هوایی (062/0 درصد) در تیمار بستر ورمی‌کولیت به همراه پتاسیم محلول در بودن Bacillus subtilis بود. بیشترین اندازه جذب پتاسیم در اندام هوایی گیاه ( 049/0میلی‌گرم در گلدان) نیز در بستر ورمی‌کولیت به همراه پتاسیم محلول در بودن Bacillus subtilis و پس از آن در اندام هوایی گیاه (036/0 میلی‌گرم در گلدان) کشت شده در بستر مسکویت به همراه پتاسیم محلول در بودن Bacillus subtilis با اختلاف معنی‌دار در سطح 5 درصد اندازه‌گیری شد.

کلیدواژه‌ها

عنوان مقاله [English]

Potassium Solubilizing Bacteria Ability to Increase Wheat Growth and Potassium uptake under in vitro Condition

نویسندگان [English]

  • N. Enayatizamir
  • A. Landi

Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

چکیده [English]

Introduction: Potassium (K) is the third major essential macronutrient for plant growth. Without adequate potassium, the plants will have poorly developed roots, grow slowly, produce small seeds and have lower yields. Due to imbalanced fertilizer application, potassium deficiency is becoming one of the major constraints in crop production. The concentrations of soluble potassium in the soil are usually very low and more than 90% of potassium in the soil exists in the form of insoluble rocks and silicate minerals. Soil microbes have been reported to play a key role in the natural K cycle and therefore, potassium solubilizing microorganisms present in the soil could provide an alternative technology to make potassium available for uptake by plants. Thus, identification of microbial strains capable of solubilizing potassium minerals quickly can conserve our existing resources and avoid environmental pollution hazards caused by heavy application of chemical fertilizers.
Materials and Methods: This study aimed to isolate and identified potassium solubilizing bacteria and evaluate those effect on K availability from muscovite and vermiculite sources to wheat crop under in vitro condition. The study was conducted as factorial in completely randomized design at three replications included bacterium inoculation (control, isolate1, isolate 2) and four k sources (muscovite, vermiculite, muscovite+ K2HPO4, vermiculite+ K2HPO4). Bacterial isolates were obtained from wheat rhizosphere on modified Aleksandrov medium containing muscovite and vermiculite powder as potassium source. Nutrient broth medium was used to prepare an overnight culture of bacteria to inoculate in Aleksandrov medium, which was used to study the dissolution of silicate minerals. The zone of solubilization recorded on Aleksandrov medium. Then the ability of two bacterial strains, including Bacillus subtilis and Corynebacterium glutamicum to release mineral K from muscovite and vermiculite was investigated. After 18 days of seed culture, aerial part of plant growth was dry digested and K concentration was determined by flame photometry. Dry and fresh weight of aerial part and root, plant height and root length was recorded.
Results: Three K-solubilizing isolates from 15 isolates identified by biochemical and molecular methods which belonged to Bacillus subtilis, Pseudomonas putida and Corynebacterium glutamicum. The potassium solubilization zone of each strain on Aleksandrov medium containing muscovite were 8.1, 65.1 and 6.3, respectively. The zone was also 9, 8 and 5.8 in Aleksandrov medium in the presence of vermiculite as insoluble potassium source. According to these results potassium release from vermiculite was more than muscovite, in spite of more potassium content of muscovite. According to the obtained results two strains Bacillus subtilis and Corynebacterium glutamicum were selected for in vitro experiment because of halo to colony diameter ratio. The ratio of halo to colony diameter in the presence of muscovite for Bacillus subtilis, Pseudomonas putida and Corynebacterium glutamicum was 1.5, 0.72 and1.3, respectively. These ratios were 2, 1.4 and 0.8, respectively in the medium containing vermiculite as insoluble potassium source. The results showed that the effect of bacteria inoculation was significant (p

کلیدواژه‌ها [English]

  • Dry weight
  • Height
  • Insoluble potassium
  • Muscovite
  • Vermiculite
1. Ahmad S., and Haddad R. 2011. Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech Journal of Genetics and Plant Breeding, 47 (1): 17–27.
2. Aleksandrov V.G., Blagodyr R.N., and Iiiev I.P. 1967. Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiolohichnyi Zhurnal (Kiev), 29: 111-114.
3. Bacilio M., Rodrguez H., Moreno M., Hernandez J.P., and Bashan Y. 2004. Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biology and Fertility of Soils, 40: 188-193.
4. Badr M.A. 2006. Efficiency of K-feldspar combined with organic materials and silicate dissolving bacteria on tomato yield. Journal of Applied Sciences Research, 2: 1191-1198.
5. Banchio E., Bogino P.C., Zygadlo J., and Giordano W. 2008. Plant growth promoting rhizobacteria improve growth and essential oil yield in Organum majorana L. Biochemical Systematics and Ecology, 36: 766-771.
6. Bordoloi N.K., and konwar B.K. 2008. Microbial surfactant enhanced mineral oil recovery under laboratory conditions. Colloids Surf. B: Biointerfaces, 63: 73-82.
7. Cappiccinio J. 1992. Microbiology: A laboratory manual. The Benjamin Cummings publishinig company, INC.39. Bridge parkway Redwood city, California.
8. Chakraborty U., Chakraborty B., and Basnet M. 2006. Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. Journal of Basic Microbiology, 46: 186 – 195.
9. Chithrashree A.C., Udayashankar S., Chandra Nayaka M.S., and Reddy C.S. 2011. Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control, 59: 114–122.
10. Girgis M. G. Z., Khalil H.M.A., and Sharaf M.S. 2008. In Vitro evaluation of rock phosphate and potassium solubilizing potential of some Bacillus strains. Australian Journal of Basic and Applied Sciences, 2 (1):68-81.
11. Glick B.R. 2004. Bacterial ACC deaminase and the alleviation of plant stress. Advances in Applied Microbiology, 56:291–312.
12. Goldstein A.H. 1994. Involvement of the quino protein glucose dehydrogenase in the solubilization of exogeneous mineral phosphates by gram negative bacteria. Pp. 197-203. In: Torriani-Gorini. A, Yagil E and Silver S, (eds.) Phosphate in Micro-Organisms: Cellular and Molecular Biology. Washington DC, ASM Press.
13. Hu X.F., Che, J., and Guo J.F. 2006. Two phosphate and potassium solubilizing bacteria isolated from Tiannumountain, Zhejiang, China. World Journal of Microbiology and Biotechnology, 22: 983-990.
14. Huang P.M., and Song S. 1988. Dynamics of potassium release from potassiumbearing minerals as influenced by oxalic and citric acids. Soil Science Society of American Journal, 52: 383-390.
15. Khayamim F., Khademi H., and Sabzalian R. 2011. Effect of Neotyphodium endophyte-tall fescue symbiosis on mineralogical changes in clay-sized phlogopite and muscovite. Plant and Soil, 341: 473-484.
16. Khyamim F., Khademi H., Khoushgoftarmanesh A.H., and Ayoubi Sh. 2010. Ability of barley (Hordeum vulgare L.) to take up potassium from di-and tri-octahedral micas. Journal of Water and Soil, 23: 4. 170-178. (in Persian with English abstract)
17. Lifshitz R., Kloepper J.W., Kozlowski M., Simonson C., Carlson J., Tipping E.M., and Zaleska I. 1987. Growth promoting of canola (rapeseed) seedlings by a strain of pseudomona putida under gnotobiotic conditions. Canadian Journal of Microbiology, 33: 390-395.
18. Liu D., Lian B., and Dong H. 2012. Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiology Journal, 29:413–421.
19. Liu W., Xu X., Yang Q., and Chrisite P. 2006. Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environmental Geochemistry and Health, 28:133–140.
20. Naher U.A., Othman R., Shamsuddin Z.H.J., Saud H.M., and Ismail R. 2009. Growth Enhancement and Root Colonization of Rice Seedlings by Rhizobium and Corynebacterium spp. Internatianal Journal of Agriculture and Biology, 11(5): 1814–9596.
21. Patten C.L., and Glick B.R. 2002. Role of Pseudomonas putida indole acetic acid in development of host plant root system. Applied Environmental Microbiology, 3795-3801.
22. Pettigrew W.T. 2008. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiologia Plantarum, 133: 670–681.
23. Prajapati K., Sharma M.C., and Modi H.A. 2013. Growth promoting effect of potassium solubilizing microorganisms on okra (Abelmoschus esculentus). International Journal of Agricultural Sciences and Research, 3(1): 181-188.
24. Rai M. K. 2006. Hand book of microbial biofertilizers. Food products press, an imprint of the Haworth press, Inc, PP: 137-182.
25. Rogers J.R., and Bennett P.C. 2004. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chemical Geology, 203: 91-108.
26. Sarikhani M.R. 2015. Increasing potassium (K) release from K-containing minerals in the presence of insoluble phosphate by bacteria. Biological Journal of Microorganism, 4(16): 87-96.
27. Sheng X.F., Zhao F., He L.Y., Qiu G., and Chen L. 2008. Isolation and characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Canadian Journal of Microbiology, 54: 1064-1068.
28. Sheng X.F., and He L.Y. 2006. Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian Journal of Microbiology, 52(1): 66-72.
29. Sheng X.F. 2005. Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biology and Soil Biochemistry, 37: 1918-1922.
30. Sheng X.F., He L.Y., and Huang W.Y. 2002. The conditions of releasing potassium by a silicate dissolving bacterial strain NBT. Agricultural Sciences in China, 1: 662-666.
31. Shilev S., Sancho D.E., and Benlloch-Gonzalez M. 2010. Rhizospheric bacteria alleviate salt-produced stress in sunflower. Journal of Environmental Management, 1-5.
32. Sparks D.L. 1987. Potassium dynamics in soils. Advances in Soil Science, 6: 1- 63.
33. Sparks D.L., and Huang P.M. 1985. Physical chemistry of soil potassium. pp: 201–276. In: Munson R. D (Ed.), Potassium in Agriculture. Amatuer Softball Association (ASA),
34. Sugumaran P., and Janarthanam B. 2007. Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World Journal of Agricultural Science, 3: 350-355.
35. Tilak K.V.B.R., Ranganayaki N., Pal K. K., De, R., Saxena A.K., Nautiyal C.S., Mittal S., Tripathi A.K., and Johri B.N. 2005. Diversity of plant growth and soil health supporting bacteria. Current science, 89(1): 136-150.
36. Tolay I., Erenoglu B., and Cakmak I. 2001. Phytosiderophore release in Aegilopsis and Triticum species under zinc and iron deficiencies. Journal of Experimental Botany, 52:1093-1099.
37. Vessey F. 2003. Plant growth promoting rhizobacteria as biofertilizers. Biomedical and Life Sciences. Plant and Soil, 255(2): 571-586.
38. Weisburg W.G., Barns S.M., Pelletier D.A., and Lane D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173 (2):697-703.
39. Yu X., Ai C., Xin L., and Zhou G. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47:138-145.
CAPTCHA Image