دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه بو علی سینا همدان

چکیده

نفوذ، فرآیندی مهم و پیچیده در ارزیابی سامانه‌های آبیاری سطحی است که روش های مختلفی برای برآورد آن در مراجع ارائه شده است. هدف از این مقاله ارزیابی پنج روش مختلف تخمین پارامترهای نفوذپذیری (دو نقطه‌ای الیوت و واکر، نفوذسنج چرخشی، سینگ و یو، یک نقطه‌ای شپارد و همکاران و دو نقطه‌ای اصلاح شده شپارد و همکاران) و تعیین سازگارترین روش در هر یک از مدل های طراحی و ارزیابی آبیاری شیاری (هیدرودینامیک، موج جنبشی و اینرسی صفر)، با استفاده از نرم افزار SIRMOD است. در این راستا از سه سری داده صحرایی استفاده شد. سپس حجم آب نفوذ یافته و زمان پیشروی آب در طول شیار، بر اساس هر یک از روش های نفوذ و مدل های شبیه‌سازی آبیاری، برآورد شد. نتایج نشان داد که در تخمین حجم آب نفوذ یافته به شیار، روش دو نقطه‌ای الیوت و واکر و روش نفوذسنج چرخشی دارای کمترین خطای نسبی (به ترتیب 9/2 و 4/21 درصد) بودند. در پیش‌بینی مرحله پیشروی آب، مدل موج جنبشی با روش نفوذسنج چرخشی، مدل اینرسی صفر با روش دو نقطه‌ای الیوت و واکر و مدل هیدرودینامیک با روش دو نقطه‌ای الیوت و واکر دارای کمترین خطای استاندارد (به ترتیب 04/10، 81/12 و 86/12 درصد) بودند. به‌طورکلی در هر پنج روش تعیین ضرایب نفوذ، مدل موج جنبشی نسبت به هیدرودینامیک و اینرسی صفر دارای دقت بیشتری در شبیه‌سازی پیشروی آب بود. این در حالی است که دو مدل هیدرودینامیک و اینرسی صفر تفاوت تقریباً ناچیزی داشتند.

کلیدواژه‌ها

عنوان مقاله [English]

Determining the Most Compatible Method for Estimating Infiltration Parameters in Mathematical Furrow Irrigation Models

نویسندگان [English]

  • samira akhavan
  • A. Mahdavi

Bu-Ali Sina University, Hamedan

چکیده [English]

Introduction: Surface irrigation is still the most used method. For accessing to high efficiency, irrigation requires careful design and correct implementation. In addition, the design and evaluation of these systems require the identification of the advance, recession, and infiltration curves. Infiltration is the most important and difficult parameter to evaluate surface irrigation systems. The objective of this study was to evaluate five different methods to estimate infiltration parameters (two-point method of Elliott and Walker, recycling furrow infiltrometer, Singh and Yu method, Shepard one-point method and modified Shepard et al. two-point method) and to determine the most compatible method with design and evaluation models of furrow irrigation (hydrodynamic, kinematic wave and zero inertia) by applying SIRMOD software.
Materials and Methods: For the simulation of the surface irrigation, the continuity and momentum equations (Sant-Venant equations) used. SIRMOD simulation model is one of the models for the management and design of surface irrigation systems. The software package, hydraulic hydrodynamic models, zero inertia and kinetic wave have been placed. These models are resolvent of the Sant-Venant equations based on various assumptions. In this study, two-point method of Elliott and Walker, recycling furrow infiltrometer, Singh and Yu method (to calculate the coefficients of Kostiakov-Louis equation), Shepard one-point method and modified Shepard et al. two-point method (to calculate the coefficients of Philip equation), were used for estimating infiltration parameters. For this purpose, three field data sets were used. The total infiltrated water volume and advance time were predicted in each infiltration method and irrigation simulation model. In order to compare and evaluate the mentioned methods, the relative and standard errors were calculated.
Results and Discussion: According to the five methods (two-point method of Elliott and Walker, recycling furrow infiltrometer, Singh and Yu method, Shepard one-point method and modified Shepard et al. two-point method) Kostyakof- Louis and Philippe equations coefficients were determined. To evaluate the different methods for estimating infiltration parameters, the volume of water penetration in the furrow length was estimated using five named methods and the findings were compared with the actual volume of infiltrated water in the furrows (was estimated using the input-output hydrograph). Values of relative error in estimating the infiltrated volume in the furrows show the two-point Elliott and Walker method with 9.2 percent relative error is the lowest error than other methods. Then recycling furrow infiltrometer (back water) method is with 21.4 percent relative error. The standard error in the simulation and predict the advance stage in furrows based on different estimated parameters showed that hydrodynamic model by two-point Elliott and Walker method will give the best results (with 12.86 percent standard error). Also in Kinetic Wave model, recycling furrow infiltrometer method has the lowest standard error (10.04 percent) and zero inertia models with two-point Elliott and Walker method have lowest standard error (12.81 percent). In Hydrodynamic and zero inertia models, recycling furrow infiltrometer and two-point method of Elliott and Walker and Singh and Yu method have estimated advance figures in furrow less than its actual value. Shepard et al. one-point method underestimated about 100 meters of furrow length and overestimated from this point to the end of the furrow. Modified Shepard et al. two-point method is generally overestimated. In the kinetic wave model, two-point Elliott and Walker and recycling furrow infiltrometer methods numbers have been estimated to be completed in accordance with the numbers seen in a distance of about 40 meters along the furrow and the low estimate since the end of the furrow. Singh and Yu method overestimated. Shepard et al. one-point and Modified Shepard et al. two-point method were like the other two models.
Conclusions: Elliott and Walker two-point method is generally the least error in the calculation of the total volume of infiltrated water through the grooves, compared to other methods and then using rotating penetrometer (back water) is located. In general it can be said that both recycling furrow infiltrometer and two- point Elliott and Walker, the most appropriate methods to determine the infiltration equation parameters than other methods under study and using them in all three hydrodynamic, kinematic wave and zero inertia models, the results of the simulation irrigation, have created the smallest error. In general, the kinetic wave model than hydrodynamic and zero inertia models, was estimated more accurately the data in water advance stage and this trend can be seen in every five methods for estimating the infiltrated parameters. However, calculated errors in both hydrodynamic and zero inertia models in predicting this stage of irrigation are almost equal.

کلیدواژه‌ها [English]

  • Infiltration equation
  • SIRMOD
  • Surface Irrigation
  • Surface Irrigation Models
1- Abbasi F., Shooshtari M.M., and Feyen J. 2003. Evalua‌tion of various surface irrigation numerical simulation models. Journal of Irrigation and Drainage Engineer‌ing, 129: 208–213.
2- Babazadeh H. 2003. Field evaluation of surface irrigation model (SIRMOD). Thesis for obtaining the degree of MSc. Tehran University. (in Persian with English abstract)
3- Bahrami M., Boroomand Nasab S. and Naseri A.A. 2009. Comparison of Muskingum-Cunge model with irrigation hydraulic models in estimation of furrow irrigation advance phase. Iranian Journal of lrrigation and drainage, 2(3): 40-49. (in Persian with English abstract)
4- Behbehani M.R., and Babazadeh H. 2005. Field evaluation of surface irrigation model (SIRMOD) (Case study in furrow irrigation). Journal of Agricultural Sciences and Natural Resources, 12(2): 11-25. (in Persian with English abstract)
5- Ebrahimian H., Liaghat A., Ghanbarian b., and Abbasi F. 2010. Evaluation of various quick methods for estimating furrow and border infiltration parameters. Irrig Sci 28:479–488.
6- Ebrahimian H,. and Liaghat A. 2011. Field evaluation of various mathematical models for furrow and border irrigation systems. Journal of Soil and Water Research, 6(2):91-101.
7- Elliot R.L, and Walker W.R. 1982. Field evaluation of furrow infiltration and advance functions. Transactions of the ASAE, 25(2): 396-400.
8- Esfandiari M., and Maheshwari B.L. 2000. Sensitivity of furrow irrigation model to input parameters. Agriculture Engineering Journal 9(3,4):117-128.
9- Esfandiari M., and Maheshwari B.L. 2001. Field evaluation of surface irrigation models. Journal of Agriculture Engineering Reserch, 79 :459-479.
10- Fatahi R. 1993. Application of kinetic model in the design and evaluation of furrow irrigation. Thesis for obtaining the degree of MSc. Isfahan University of Technology. (in Persian with English abstract)
11- Golestani S., Tabatabaei S.H., and Shayannejad M. 2009. Improvement of the volume balance model by adjusting water surface storage term in furrow irrigation system. Journal of Water and Soil Science, 1(20): 47-60. (in Persian with English abstract)
12- Hassanli M., Shams M., Ebrahimian H., and Liaghat A. Field evaluation of SIRMOD model for alternate furrow irrigation. Proceedings of the 1th National Conference Meteorology and Agricultural water Management, 22-23 Nov. 2011. Tehran University, Karaj, Iran. (in Persian with English abstract)
13- Holzapfel E.A., Jara J., Zuñiga C., Mariño M.A., Paredes J., and Billib M. 2004. Infiltration parameters for furrow irrigation. Agricultural Water Management, 68:19-32.
14- Khatri K.L., and Smith R.J. 2005. Evaluation of methods for determining infiltration parameters from irrigation advance data. Irrigation and Drainage, 54:467–482.
15- Maheshwari B.L., and McMahan T.A. 1993. Performance evaluation of border irrigation model for southest Australia. Journal of Agriculture Engineering Reserch. 54:127-139.
16- McClymont D.J., Rain S.R., and Smith R.J. 1996. The prediction of furrow irrigation performance using the surface irrigation model (SIRMOD). P. 46-59. Proceedings of the 13th Annual Conference, Irrigation Association of Australia, 14-16 May, 1996, Adelide.
17- McClymont D.J., Smith R.J., and Rain S.R. 1999. An integrated numerical model for the design and management of surface irrigation. P.148-160. Proceedings of the Int. Conference on Multi-Objective Decision Support Systems, 1-6 August, 1999, Brisbane.
18- Mostafazadeh B., Fatahi R., and Mousavi S.F. 1996. Use of kinematic wave model in evaluating furrow irrigation system. Iranian Journal Agriculture science, 27(3): 45-54. (in Persian with English abstract)
19- Mostafazadeh B., and Mousavi S.F. 1996. Surface Irrigation. (Theory and Pracric). Farhang Game publications, Tehran.
20- Rasoulzadeh A., and Sepaskhah A.R. 2003. Scaled infiltration equations for furrow irrigation. Biosystem Engineering, 86(3):375-383.
21- Shepard J.S., Wallender W.W., and Hopmans J.W. 1993. One-point method for estimating furrow infiltration. Transactions of the ASAE, 36(2):395-404.
22- Singh V.P., and Yu F.X. 1990. Derivation of infiltration equation using system approach. Journal of Irrigation and Drainage, Div. ASCE, 116(6):837-857.
23- Sohrabi T., and Paydar Z. 2005. Irrigation Systems Designing. Tehran publisher, Tehran. (in Persian)
24- Walker W.R. 2005. Multilevel calibration of furrow infiltration and roughness. Irrigation and Drainage Engineering, 131(2):129-136.
25- Zare N., shir Afrous A., Yazdany M.R. and Rafiee M.R. Investigation of in SRFR3.1 and SIRMOD soft wares for the analysis and hydraulically simulation of the border irrigation under Sorghum Bicolor cultivation. Proceedings of the 1th National Conference Meteorology and Agricultural water Management, 22-23 Nov. 2011. Tehran University, Karaj, Iran. (in Persian with English abstract)
CAPTCHA Image