نوع مقاله : مقالات پژوهشی
نویسندگان
1 دانشگاه شهید چمران اهواز
2 دانشگاه تبریز
3 دانشگاه شهرکرد
چکیده
پیش بینی دبی رودخانه ها یکی از موارد کلیدی در برنامه ریزی و مدیریت منابع آب می باشد. در این مطالعه از دو روش مبتنی بر آنالیز موجک و شبکه عصبی مصنوعی (ANN) به منظور پیش بینی دبی جریان رودخانه بهشت آباد استفاده شد. بدین منظور، داده های دبی متوسط روزانه رودخانه مذکور و اطلاعات بارش روزانه مربوط به 17 ایستگاه هواشناسی در طول دوره آماری 2008-1999 استفاده گردید. در روش اول موسوم به روش موجک متقاطع (CW)، از موجک مختلط مورلت به عنوان تابع آنالیزگر استفاده شد. تجزیه موجک برای هر یک از سری های زمانی مجموع بارش روزانه و دبی متوسط روزانه جریان بصورت جداگانه انجام گرفت. فاز اولیه و اختلاف فاز زیر سری های حاصل از تجزیه موجک و ثابت های واسنجی محاسبه گردید. سپس بازسازی سری های ساختاری انجام و میانگین مولفه های ساختاری بازسازی شده محاسبه شد. مدل دبی جریان به ازای افق های پیش بینی 1 روز، 2 روز، 3 روز و 7 روز جلوتر بسط داده شد. در روش دوم موسوم به روش تلفیقی موجک و شبکه عصبی (WNN)، ابتدا با استفاده از موجک گسسته میر، پردازش اولیه بر روی ماتریس ورودی اولیه انجام گرفت. سپس با نرمالسازی درایه های ماتریس ورودی اولیه، ماتریس ورودی ثانویه تشکیل گردد. ماتریس ورودی ثانویه و ماتریس هدف به یک شبکه سه لایه پیشخور با الگوریتم پس انتشار (FFBP) اعمال شدند. آموزش شبکه با استفاده از تابع آموزش لونبرگ مارکوارت (LM) انجام گرفت. نهایتاً، پیش بینی جریان به ازای افق های زمانی کوتاه مدت انجام شد. نتایج نشان داد پیش بینی های مدل WNN در مقایسه با مدل های CWو ANN از دقت بالاتری برخوردار می باشد.
کلیدواژهها
عنوان مقاله [English]
Forecasting of Mean Daily Runoff Discharge of Behesht-Abad River Using Wavelet Analysis
نویسندگان [English]
- Sajjad Abdollahi Asadabadi 1
- yaghoub dinpazhoh 2
- Rasoul Mirabbasi 3
1 Shahid Chamran University of Ahvaz
2
3 Shahrekord University
چکیده [English]
Forecasting of river discharge is a key aspect of efficient water resources planning and management. In this study, two models based on Wavelet Analysis and Artificial Neural networks (ANNs) were developed for forecasting discharge of Behesht-Abad River. For this purpose, mean daily discharge data of mentioned river as well as precipitation data of 17 meteorological stations were used in the period 1999-2008. In the first method, called Cross Wavelet (CW), complex Morlet wavelet was used as analyzer function. Wavelet analyzing was performed for every daily rainfall and average discharge time series, separately. Initial phase, phase differences of subseries obtained from wavelet analysis, and calibration coefficients were calculated. Then structural series were reconstructed and average of structural components calculated. The river discharges were predicted for 1, 2, 3 and 7 days ahead forecasting horizon. In the second method, called Wavelet Neural Networks conjunction (WNN), a preprocessing was done on the initial input matrix using Meyer wavelet. Then the elements of the initial input matrix were normalized and the second input matrix was created. A three layer Feed Forward Back Propagation (FFBP) was formed based on the second input matrix and target matrix. After training the model using Levenberg–Marquardt (LM) algorithm, the river discharges were predicted for short term time horizons. The results showed that the WNN method had higher accuracy in short-term forecasting of river discharge in comparison with CW and ANN methods.
کلیدواژهها [English]
- forecasting
- River discharge
- Cross Wavelet
- Artificial neural network
ارسال نظر در مورد این مقاله