Document Type : Research Article
Authors
Ferdowsi University of Mashhad
Abstract
Introduction: Many researchers studied and emphasized on determining the importance of climatic factors that affect crop yield. As the most source of moisture in rainfed cultivation, precipitation is the most important climate factor. Spatial and temporal change of this factor effects crop yield. Standardized Precipitation Index (SPI) is useful to characterize the condition of the moisture supply before and during the growing season of crops. Studies have shown that in some areas there is little correlation between spring wheat yield and SPI, while in other areas there is significant relationship between wheat yield and SPI. This difference indicates SPI as an indicator of moisture supply, depend on the study area .The purpose of this study was to determine the most effective period of precipitation during growing season for rainfed barley using variables obtained from moisture supply and precipitation periods in Tabriz. The most effective period of precipitation can be used for the management of rainfed cultivation.
Materials and Methods: Daily temperature and precipitation data of Tabriz station were collected from Iran Meteorological Organization for the years 1955 to 2013. In addition, barley yields data were collected for the years 1977 to 2013. In this study, the occurrence of phenological stages (germination, tillering, anthesis, ripening and harvesting) were estimated using growing degree days (GDD). The SPI value for 28-week time scale of the first week after planting (SPI28) was considered as an indicator of the moisture supply during growing season. SPI28 values less than zero and greater than zero representing different classes of drought and humidity respectively. For correlation analysis, 128 weekly variables were defined at different time scales of daily precipitation data (Table 2). The relationship between the crop yield and precipitation variables were analyzed by linear correlation.
Results and Discussion: The correlation coefficient (r) between precipitation and annual rainfed barley yield were presented in Table 2. The highest correlation between yield and precipitation occurred during the 10-week period between 25 February and 6 May, which was mostly observed at the end of April to mid-May that was coincide with the beginning of anthesis. So it can be concluded that the anthesis stage was the most critical stage to water stress in barley. Based on the SPI28 value greater than zero (wet conditions) or less than zero (dry conditions), the amount of precipitation (between 25 February and 6 May) was divided into two groups. The amount of precipitation between 25 February and 6 May explained 78% of the yield variations when SPI28 was greater than zero (wet conditions). One mm increase in precipitation in this period increased the yield with the rate of 2/76 kg / ha. If early planting conditions is dry (SPI 28
Keywords
Send comment about this article