دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه رازی

چکیده

مصرف بیش از حد نیتروژن باعث آبشویی نیترات و آلودگی آب‌های زیرزمینی می‌شود، بنابراین اطلاع از توزیع اشکال مختلف نیتروژن و چگونگی حرکت آن‌ها در خاک اهمیت بالایی دارد. به منظور شبیه‌سازی اثر کود نیتروژن بر رشد و عملکرد گندم و همچنین تغییرات نیتروژن خاک و گیاه با استفاده از مدل CERES-Wheat، دو آزمایش در سال زراعی 1395-1394 اجرا شد. هر دو آزمایش در قالب طرح پایه بلوک‌های کامل تصادفی با 3 تکرار انجام شد. تیمارهای آزمایش شامل کاربرد سطوح کود نیتروژن (90، 180، 300 و360 کیلوگرم اوره در هکتار) بود. از نتایج یک آزمایش به منظور استخراج ضرایب ژنتیکی و واسنجی مدل و از دیگری به منظور ارزیابی مدل استفاده شد. نتایج واسنجی نشان داد که مدل قادر است با حداقل اختلاف ویژگی‌های رشد و نمو گندم را شبیه‌سازی کند که بیانگر دقت بالای ضرایب ژنتیکی محاسبه شده بود. نتایج ارزیابی‌ها نشان داد که مدل قادر بود با دقت بالای صفات مورد ارزیابی گندم را شبیه سازی کند، بطوریکه میزان جذر میانگین مربعات خطای نرمال شده برای مراحل نموی، وزن خشک کل و عملکرد دانه به ترتیب در حدود 7 تا 8، 5 تا 9 و 11 تا 17 درصد میانگین مشاهدات بود. نتایج شبیه‌سازی‌ها نشان داد، همزمان با کاربرد کود اوره محتوای یون‌های نیترات و آمونیوم خاک افزایش یافت. بیشترین میزان نیترات در تیمارهای 90، 180، 300 و 360 کیلوگرم اوره در هکتار به ترتیب حدود 3/41، 5/54، 1/72 و 9/80 کیلوگرم در هکتار بود. با افزایش مصرف نیتروژن، مقدار آبشویی نیتروژن نیز به شدت افزایش یافت، به طوری‌که میزان هدر رفت نیتروژن در تیمارهای 90 ، 180، 300 و 360 کیلوگرم اوره در هکتار به ترتیب حدود 3/259، 2/276، 4/310 و 5/335 کیلوگرم در هکتار بود. همچنین با افزایش کاربرد کود اوره میزان نیتروژن در اندام‌های هوایی و دانه گندم افزایش یافت. بطورکلی نتایج این بررسی نشان داد که مدل CERES-Wheat توانایی قابل قبولی در شبیه سازی تغییرات وضعیت نیتروژن خاک و گیاه دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Simulation of Changes in Soil and Plant Nitrogen by CERES-Wheat Model

نویسندگان [English]

  • F. Mondani
  • B. Gholami
  • A.R. Bagheri
  • Gh.R. Mohammadi

Razi University

چکیده [English]

Introduction: The DSSAT model is one of the most general and extensively used process-based crop growth simulation models. This model has been used worldwide to simulate crop biomass, yield, and soil nitrogenleaching under different management practices and various climatic conditions. Among management agronomic factors, nitrogen fertilizer has a major effect on crops production. However, nitrogen fertilizer limiting causes to decrease crops production, but, high application rates of nitrogen would led to strong environmental consequences. Thus, management of nitrogen fertilizer consumption causes to decrease environmental pollution in the agroecosystems. Therefore, the objectives of the present study were: (1) determination of genetic coefficients and calibration of the CERES-Wheat modelof DSSAT-CSM, (2) evaluation the performances of model forsimulating wheat growth, development and grain yield and (3) simulationof changesof soil and plant nitrogen in different fertilizer nitrogen application rates under Kermanshah climate condition.
Materials and Methods: Two experiments were established based on the randomized complete block design with three replications during 2015-2016. The treatments were included 4 levels of nitrogen fertilizer application (90, 180, 300 and 360 kg ha-1 urea). The required model inputs describe field management, daily weather condition, soil profile characteristics, and cultivar characteristics. The cultivar coefficients calibrated under optimum conditions (i.e., minimum stress in weather and nutrients). The genetic coefficients (P1V, P1D, P5, G1, G2, G3 and PHINT) of the Pishtaz wheat cultivar were derived using the GenCal software of DSSAT v 4.6 for 300 kg Urea ha-1 treatment (optimum condition of nitrogen fertilizer based on the results of soil library). After model calibration process, the CERES-Wheat model validated by comparing simulated and measured values of wheat cultivars phenologicaldevelopment stages (DVS), leaf area index, total dry weight and grain yield for treatments of 90, 180, 300 and 360 kg Urea ha-1 fertilizer by root mean square error (RMSE), normalized RMSE (nRMSE) and index of agreement (d) by results ofan independent experiment from calibration experiment.
Results and Discussion: The results indicated that the coefficient P1V was 54.45 °C day, the coefficient P1D was set 90.75 days hr-1, the value for P5 was 720 °C day, the value for G1 was 25, the values for G2 was 30 mg day-1, the value for G3 2 g, and the PHINT was 95°C day. The calibration results showed that the CERES-Wheat model was able to simulate growth, development stages and yield correctly, which indicate high accuracy in calculated genetic coefficients derived using the GenCal software of DSSAT v 4.6. In the simulated and measured conditions, leaf area index, total dry weight and grain yield improved by increasing of nitrogen fertilizer application. In the simulated and observed conditions, the highest grain yields were 7048 and 7874 kg ha-1 in the treatment of 360 kgnitrogen ha-1 and the lowest grain yields were 4006 and 4217 kg ha-1 in the treatment of 360 kgnitrogen ha-1, respectively. The validation results also indicated that the CERES-Wheat model had high ability to predictg growth, development stages and grain yield in the different fertilizer nitrogen application rates. So that, the RMSE fordevelopment stages were about 3 to 4 days and the nRMSEwere about 7 to 8% of measured average, respectively. The index of agreement (d) for development stages was about 0.99. The RMSE for total dry weight were about 360 to 720 kg ha-1 and the nRMSE were about 5% to 9% of measured average, respectively. The index of agreement (d) for total dry weight were about 0.94 to 0.99. The amount RMSE for grain yield were 304 to 630 kg ha-1 and the nRMSE were 11% to 17% of measured average, respectively. The index of agreement (d) for grain yield ranged from 0.98 to 0.99. The simulation result also indicated that amount of soil NO3 and NH4 increased with nitrogen fertilizer application. The highestsoil NO3 were 41.3, 54.5, 72.1 and 80.9 kg ha-1 in the treatments of 90, 180, 300 and 360 kg Urea ha-1, respectively. The amount of nitrogen leaching increased with rising of nitrogen fertilizer. The nitrogen leaching were 259.3, 276.2, 310.4 and 335.5 kg ha-1 in the treatments of 90, 180, 300 and 360 kg Urea ha-1, respectively. The amount of nitrogen in the wheat biomass improved by increasing nitrogen fertilizer application.
Conclusion: The results indicated that the CERES-Wheat calibrated correctly that confirm calculated genetic coefficient for Pishtaz cultivar under Kermanshah climate conditions. The results of validation also showed that the CERES-Wheat model was able to simulate all studied traits wheat cultivars except leaf area index accurately in different fertilizer nitrogen application rates. Excessive nitrogen consumption led to nitrogen leaching and groundwater pollution. Therefore, it is important to know the distribution of various forms of nitrogen and how they move in the soil.

کلیدواژه‌ها [English]

  • grain yield
  • Model calibration
  • Model validation
  • Nitrogen efficiency
  • Nitrogen leaching
- Abeledo G.L., Savin R., and Slafer G.A. 2008. Wheat productivity in the Mediterranean Ebro Valley: Analyzing the gap between attainable and potential yield with a simulation model. European Journal of Agronomy, 28: 541-550.
2- Akiyama H., Tsuruta H., and Watanabe T. 2000. N2O and NO emissions from soils after the application ofdifferent chemical fertilizers. Chemosphere - Global Change Science, 2: 313-320.
3- Ahmadi M., Mondani F., Khoramivafa M., Mohammadi G.R., and Shirkhani A. 2018. Evaluation of Nitrogen Uptake and Productivity of Maize Cultivars (Zea mays L.) under Kermanshah Climate Conditions. Journal of Agroecology, 10: 234-247. (In Persian with English Summary).
4- Arora V.K., Singh H., and Singh B. 2007. Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-Wheat model. Agricultural water management, 94: 22–30.
5- Bannayan M., Crout M.J., and Hoogenboom G. 2003. Application of the CERES-Wheat Model for Within-Season Prediction of Winter Wheat Yield in the United Kingdom. Agronomy Journal, 95: 114–125.
6- Blaylock A.D., Kaufmann J., and Dowbenko R.D., 2005. Nitrogen Fertilizer Technologies. Western Nutrient Management Conference. Salt Lake City, UT.
7- Chisanga C.B., Phiri E., Shepande C., and Sichingabula H., 2015. Evaluating CERES-Maize Model Using Planting Dates and Nitrogen Fertilizer in Zambia. Journal of Agricultural Science, 7: 79-97.
8-Cox, W.J., and Cherney, D.J. 2001. Row spacing, plant density and nitrogen effects on corn silage. Agronomy Journal, 93: 597- 607.
9- Delghandi M., Andarzian B., Broomandnasab S., Massah-Bovani A., and Javaheri E. 2014. Evaluation of DSSAT 4.5-CSM-CERES-Wheat to Simulate Growth and Development, Yield and Phenology Stages of Wheat under Water Deficit Condition (Case Study: Ahvaz Region). Journal of Water and Soil, 28: 82-91. (In Persian with English abstract).
10- Dettori M., Cesaraccio C., Motroni A., Spano D., and Duce P. 2011.Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy, Field Crop Research. 120: 179-188.
11- Fang Q., Yu Q., Wang E., Chen, Y., Zhang G., Wang J., and Li, L. 2006. Soil nitrate accumulation and crop nitrogen use influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Journalof Plant and Soil, 284: 335-350.
12- Farid, H.U., Bakhsh A., Mahmood-Khan Z., Ahmad N., and Ahmad A., 2015. Calibration and Validation of CERES-Wheat (Triticum aestivum) Model for Simulating Fertilizer Application Rates in Management Zones. Journal of Agricultural Science, 7: 115-127.
13- Ghamari M., Andarzian B., Bakhshandeh A.M., Gharineh M.H., and Fathi G.H. 2011. Simulating Effects of Drought and Nitrogen Stress on Yield, Water and Nitrogen use Efficiency of Corn Using CERES-Maize Simulating Model. Crop Physiology Journal, 3: 21-31.
14- Gheysari M., Mirlatifi S.M., Homaee M., and Asadi M.E. 2007. Nitrate Nitrogen Leaching in a Corn Silage Field Fertigated Via a Sprinkler Irrigation System. Journal of Agricultural Engineering Research, 7: 101-108.
15- Guo R., Lin Z., Mo X., and Yang, C. 2010. Responses of crop yield and water use efficiency to climate change in the North China Plain. Agricultural Water Management. 97: 1185-1194.
16- Hassegawa R.H., Fonseca H., Luiz-Fancelli A., Da-Silva V.N., Schammass E.A., Reis T.A., and Correa, B. 2008. Influence of macro- and micronutrient fertilization on fungal contamination and fumonisin production in corn grains. Food Control, 19: 36–43.
17- Heitholt J.J., Croy L.I., Maness N.O., and Nguyen H.T. 1990. Nitrogen Partitioning in Genotypes of Winter Wheat Differing in Grain N Concentration. Field Crops Research, 23: 133-144.
18- Hoogenboom G., Jones J.W.P., Wilkens W., Porter C.H., Boote K.J., Hunt L.A., Singh U., Lizaso J.I., White J.W., Uryasev O., Ogoshi R., Koo J., Shelia V., and Tsuji G.Y., 2015. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6 (http://dssat.net). DSSAT Foundation, Prosser, Washington.
19- Hundal, S.S., and Kaur P. 1997.Application of the CERES–Wheat model to yield predictions in the irrigated plains of the Indian Punjab. Journal of Agricultural Science, 129: 13-18.
20- Jones J.W., Hoogenboom G., Porter C.H., Boote K.J., Batchelor W.D., Hunt L.A., Wilkens P.W., Singh U., Gijsman A.J., and Ritchie J.T. 2003. DSSAT Cropping System Model. European Journal of Agronomy, 18, 235‐265.
21- Kiani A., Koocheki A.R., Banaeyan M., and Nassiri-Mahalati M. 2003. CERES-Wheat Model Evaluation at two Different Climatic Location in Khorasan Province: I-Yield Prediction. Biaban Journal 8: 264-275. (In Persian with English abstract).
22- Lemon J. 2007. Nitrogen management for wheat protein and yield in the Esperance port zone. Department of Agriculture and Food. Bulletin. 4707: 1-27.
23- Liu H.L., Yang J.Y., Drury C.F., Reynolds W.D., Tan C.S., and Bai Y.L., et al., 2011. Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production. Nutrient Cycling in Agro ecosystems, 89: 313-328.
24- Malhi S.S., Grant C.A., Johnston A.M., and Gill, K.S., 2001.Nitrogen fertilization management for no-till cerealproduction in the Canadian Great Plains: a review. Soil & Tillage Research, 60: 101–122.
25- Mearns L.O., Rosenzweig C., and Goldberg R. 1992. Effect of changes in interannual climatic variability on CERES-wheat yields: sensitivity and 2×CO2 general circulation model studies. Agricultural and Forest Meteorology, 62: 159-189.
26- Mehrab N., and Chorom M. 2014. Leaching of Nitrogen in the Presence of Zeolite Enriched with Ammoniumin Two Soil Textures under Wheat Cultivation. Water and Soil Science, 24: 159-170.
27- Mi G., Tang L., Zhang F., and Zhang J., 2000. Is nitrogen uptake after anthesis in wheat regulated by sink size? Field Crops Research, 68: 183-190.
28- Mondani F. 2018. Simulation of Nitrogen Fertilizer Effect on Maize (Zea Maize) Production by CERES-Maize Model under Kermanshah Climate Condition. Journal of Water and Soil. 31: 1665-1678. (In Persian with English abstract).
29- Mondani F., Nassiri-Mahallati M., Koocheki A., and Hajian-Shahri M. 2015. Simulation of wild oat (Avena ludoviciana L.) Competition on Winter Wheat (Triticum aestivum) Growth and Yield. I: Model Description and Validation. Iranian Journal of Field Crops Research, 13: 218-231. (In Persian with English abstract).
30- Muurinen S., Kleemola J., and Peltonen-Sainio P. 2007. Accumulation and translocation of nitrogen in spring cereal cultivars differing in nitrogen use efficiency. Agronomy Journal, 99: 441-447.
31- Nassiri Mahallati, M. 2000. Modeling Potential Crop Growth Processes: textbook with Exercises. Jahad-e-Daneshgahi of Mashhad Press. (In Persian).
32- Nassiri-Mahallati M., and Koocheki A. 2010. Agroecological zoning of wheat in Khorasan provinces: Estimating yield potential and yield gap.Iranian Journal of Field Crops Research, 7: 695-709. (In Persian with English abstract).
33- Noshadi M., and Mehrabi F. 2014. Measuring and Simulation of Nitrate Leachate Using LEACHN Model. Journal of Water and Soil, 28: 430-439. (In Persian with English abstract)
34- Novakova K., and Nagel D. 2009. The Influence of Irrigation on Nitrates Movementin Soil and Risk of Subsoil Contamination. Soil &Water Research, 4: 131-136.
35- Popova Z., and Kercheva M. 2005. CERES model application for increasing preparedness to climate variability in agricultural planning–calibration and validation test. Physics and Chemistry of the Earth, 30: 125–133.
36- Reynolds M.P., Hobbs P.R., and Braun H.J. 2007.Challenges to international wheat improvement. Journal of Agricultural Science, 145: 223-227.
37- Rinaldi M. 2004.Water availability at sowing and nitrogen management of durum wheat: a seasonal analysis with the CERES-Wheat model. Field Crops Research, 89: 27–37.
38-Sadeghi, H., and Bahrani, M.J. 2002. Effects of plant density and N rates on morphological characteristics and protein contents of corn. Iranian Journal of Agriculture Science, 33: 403-412. (In Persian with English Summary).
39- Satorre E.H. and Slafer G.A. 1999. Wheat Ecology and Physiology of Yield Determination. Food Product Press, New York, P: 503.
40- Singh A.K., Tripathy R., and Chopra U.K. 2008. Evaluation of CERES-Wheat and Crop Syst models for water–nitrogen interactions in wheat crop. Agricultural water management, 95: 776–78.
41- Sticksel E., Maidi F.X., Retzer F., and Fischeck G. 1999. Nitrogen uptake and utilization in winter wheat under different fertilization regimes, with particular reference to main stems and tiller. Journal of Agronomy and Crop Science, 183: 47-52.
42- Timsina T, Singh U., Badaruddin M., Meisner C., and Amin M.R. 2001. Cultivar, nitrogen, and water effects on productivity, and nitrogen-use efficiency and balance for rice–wheat sequences of Bangladesh. Field Crop Research, 72: 143-161.
43- Timsina J., and Humphreys E. 2006. Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review. Agricultural Systems, 90: 5-31.
44- Wang D.J., Lin J.H., Sun R.J., Xia L.Z., and Lian, G. 2003. Optimum nitrogen rate for a high productive rice wheat system and its impact on the groundwater in the Taihu Lake area. Acta Pedologica Sinica, 40: 426-432.
45- Weligama C., Sale P.W.G., Conyers M.K., Liu D.L., and Tang C. 2010. Nitrate leaching stimulates subsurface root growth of wheatand increases rhizospherealkalisation in a highly acidic soil. Plant Soil, 328: 119–132.
46- Yang J.M., Yang J.Y., Liu S., and Hoogenboom G. 2014. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 127: 81-89.
CAPTCHA Image