دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

مدیریت صحیح و منطقی و طراحی برنامه­های کاربری اراضی در تأمین تقاضای غذا در سراسر جهان مفید بوده است. ارزیابی و تعیین تناسب زمین در حصول اطمینان از استفاده بهینه از منابع اراضی و درعین‌حال حفظ پتانسیل آن برای نسل­های آینده مفید است. هدف اصلی این مطالعه ارزیابی رقومی تناسب اراضی برای کشت آبی محصولات زراعی گندم، جو و یونجه در منطقه آبیک دشت قزوین است. بدین‌منظور از اطلاعات 288 تعداد پروفیل خاک برای محاسبه شاخص اراضی استفاده گردید. همچنین متغیرهای توپوگرافی شامل مشتقات اولیه و ثانویه مدل رقومی ارتفاع و متغیرهای مستخرج از تصاویر سنجش‌ازدور (ماهواره لندست 8) شامل شاخص­های طیفی به‌عنوان متغیرهای محیطی جهت مدل­سازی نقشه تحت کلاس تناسب اراضی برای سه محصول یونجه، گندم و جو و همچنین تهیه نقشه رده‌بندی خاک در سطح فامیل استفاده شدند. هشت عامل توپوگرافی، خاک و اقلیمی شامل درصد شیب، اقلیم، بافت، گچ، کربنات کلسیم معادل، هدایت الکتریکی (EC) و نسبت جذب سدیم (SAR) به‌عنوان عوامل مؤثر در ارزیابی تناسب زمین برای گندم، جو و یونجه شناسایی شدند. در ادامه از روش پارامتریک (ریشه دوم) برای محاسبه درجات تناسب سرزمین برای محصولات مورد نظر استفاده شد. مدل یادگیری ماشین جنگل تصادفی نیز جهت مدل‌سازی مکانی، تهیه نقشه پهنه­بندی و تعیین درجه اهمیت متغیرهای محیطی مورداستفاده قرار گرفت. نتایج پیش­بینی مکانی نشان داد که مدل جنگل تصادفی تناسب اراضی را برای گندم، جو و یونجه به‌ترتیب با ضرایب کاپا 81، 84، 85 درصد و دقت کلی 86، 88 و 89 درصد طبقه‌بندی کرد. به‌ترتیب نتایج ارزیابی تناسب اراضی نشان داد که بیشترین کلاس تناسب اراضی مربوط به جو با 40 درصد، یونجه با 5/35 درصد و گندم با 32 درصد از کل مساحت منطقه در کلاس S1 بود. در بین متغیرهای محیطی پیش­بینی کننده برای محصول جو متغیرهایDiffuse ،SHt  و MrVBF، برای محصول گندم متغیرهای Diffuse، MrVBF و TWI و برای محصول یونجه سه متغیر MrVBF، Diffuse و Valley_depth مهم‌ترین مشاهده گردیدند. بطور کلی، مهم‌ترین عوامل محدود کننده برای زراعت آبی محصولات مورد نظر مربوط به ویژگی­های خاک بود، به­نحوی­که در نواحی شمالی بافت و در نواحی جنوبی ویژگی­های درصد آهک، گچ، شوری و قلیاییت خاک­ها به‌عنوان مهم‌ترین عوامل محدودکننده شناسایی شدند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Digital Land Suitability Assessment for Irrigated Cultivation of Some Agricultural Crops Using Machine Learning Approaches (Case Study: Qazvin-Abyek)

نویسندگان [English]

  • F. Jannati
  • F. Sarmadian

Soil Engineering Department, Faculty of Agricultural, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

چکیده [English]

Introduction
Research and development in high-potential agricultural areas are of great importance for ensuring the food needs of the population and livestock. Neglecting these regions can lead to increased food prices and food shortages, which can have a negative impact on the economy and public health. Land suitability maps provide essential information for agricultural planning and are vital for reducing land degradation and evaluating sustainable land use. The utilization of modern mapping techniques such as digital soil mapping and machine learning algorithms can significantly improve the accuracy of land suitability assessment and crop performance prediction. These methods have been widely employed as primary tools for mapping and evaluating land suitability in various regions worldwide.
 
Materials and Methods
In this study, a total of 288 soil profiles were utilized to compute the land suitability index for wheat, barley, and alfalfa crops. Various environmental variables were included, such as topographic factors derived from the digital elevation model and spectral indices obtained from Landsat 8 satellite imagery. Eight key factors, namely slope percentage, climate, texture, gypsum content, equivalent calcium carbonate, electrical conductivity (EC), and sodium absorption ratio (SAR), were identified as influential in the assessment of land suitability. To quantify the degrees of land suitability for the target crops, a parametric approach based on the square root method was employed. Moreover, the random forest machine learning model was utilized for spatial modeling, zoning mapping, and determining the significance of environmental variables in the land suitability evaluation process. By incorporating these comprehensive methodologies, a more detailed and accurate understanding of the land suitability for wheat, barley, and alfalfa cultivation can be achieved, facilitating informed decision-making in agricultural planning and land management strategies.
 
Results and Discussion
The spatial prediction results demonstrated the effectiveness of the random forest model in classifying land suitability for wheat, barley, and alfalfa. The model achieved high accuracy, with Kappa coefficients of 81%, 84%, and 85% for wheat, barley, and alfalfa, respectively. The overall accuracies were also impressive, reaching 86% for wheat, 88% for barley, and 89% for alfalfa. Analyzing the land suitability assessment results, it was found that barley had the highest land suitability class, covering a significant portion of 40% in class S1. Alfalfa followed closely with 35.5% of the total area, and wheat occupied 32% in the same class. Delving into the predictive environmental variables for barley, Diffuse, SHt, and MrVBF emerged as the most influential factors. These variables played a crucial role in assessing the suitability of land for barley cultivation. Similarly, for wheat, the variables Diffuse, MrVBF, and TWI were identified as significant indicators, contributing to the accurate prediction of wheat performance. Regarding alfalfa, the variables MrVBF, Diffuse, and Valley_depth stood out as the most important variables, providing valuable insights into land suitability for alfalfa cultivation. In general, the limiting factors for irrigated cultivation of these crops were primarily associated with soil properties. In the northern regions, soil texture was identified as a significant limiting factor, impacting the suitability of the land for crop cultivation. On the other hand, in the southern regions, soil characteristics such as the percentage of lime, gypsum, salinity, and alkalinity were recognized as the most influential limiting factors, affecting the suitability of the land for successful crop production. These findings provide valuable information for land planners, farmers, and decision-makers in determining suitable areas for wheat, barley, and alfalfa cultivation. By considering the identified influential factors and addressing the limiting soil properties, agricultural practices can be optimized to maximize crop productivity and ensure sustainable land use.
 
Conclusion
The research aimed to evaluate land suitability for wheat, barley, and alfalfa crops under irrigation. Data selection focused on the most limiting factors for these crops. The model achieved acceptable predictions for wheat, barley, and alfalfa, with Kappa coefficients of 0.81, 0.85, and 0.84, and overall accuracies of 0.86, 0.89, and 0.88, respectively. Barley had the highest percentage of suitable land (40%), followed by alfalfa (39.5%) and wheat (32%). Soil constraints varied across the study area, including texture, stoniness, lime, gypsum, salinity, and alkalinity. The analysis identified 31 soil types, and the random forest model yielded a digital soil map with a Kappa coefficient of 0.76 and overall accuracy of 0.81. The findings support effective land management and agricultural planning.

کلیدواژه‌ها [English]

  • Digital soil mapping
  • Parametric method
  • Random forest
  • Suitability and digital assessment

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Alhajj Ali, S., Tallou, A., Vivaldi, G.A., Camposeo, S., Ferrara, G., & Sanesi, G. (2024). Revitalization potential of marginal areas for sustainable rural development in the Puglia region, Southern Italy: Part I: A Review. Agronomy, 14(3), 431. https://doi.org/10.3390/agronomy14030431
  2. Baroudy, A.A. E., Ali, A.M., Mohamed, E.S., Moghanm, F.S., Shokr, M.S., Savin, I., & Lasaponara, R. (2020). Modeling land suitability for rice crop using remote sensing and soil quality indicators: The case study of the nile delta. Sustainability, 12(22), 9653. https://doi.org/10.3390/su12229653
  3. Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs. 2016.01.011
  4. Dang, K.B., Burkhard, B., Windhorst, W., & Müller, F. (2019). Application of a hybrid neural-fuzzy inference system for mapping crop suitability areas and predicting rice yields. Environmental Modelling & Software, 114, 166-180.‏ https://doi.org/10.1016/j.envsoft.2019.01.015
  5. Gasmi, A., Gomez, C., Chehbouni, A., Dhiba, D., & Elfil, H. (2022). Satellite multi-sensor data fusion for soil clay mapping based on the spectral index and spectral bands approaches. Remote Sensing, 14(5), 1103. https://doi.org/ 10.3390/rs14051103
  6. Guo, Z., Adhikari, K., Chellasamy, M., Greve, M.B., Owens, P.R., & Greve, M.H. (2019). Selection of terrain attributes and its scale dependency on soil organic carbon prediction. Geoderma, 340, 303-312. https://doi.org/ 10.1016/j.geoderma.2019.01.023
  7. Heung, B., Hodúl, M., & Schmidt, M.G., (2017). Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes. Geoderma, 290, 51-68. https://doi.org/10.1016/j.geoderma. 2016.12.001
  8. Khamoshi, S.E., Sarmadian, F., & Keshavarzi, A. (2018). Digital soil mapping using random forests model in Abyek, Qazvin province. Iranian Journal of Soil Research, 32(3), 393-402. (In Persian). https://doi.org/10.22092/ ijsr.2018.117828
  9. Khan, N.M., Rastoskuev, V.V., Sato, Y., & Shiozawa, S. (2005). Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agricultural Water Management, 77(1-3), 96-109. https://doi.org/10.1016/j.agwat.2004.09.038
  10. Kidd, D., Webb, M., Malone, B., Minasny, B., & McBratney, A. (2015). Digital soil assessment of agricultural suitability, versatility and capital in Tasmania, Australia. Geoderma Regional, 6, 7-21. https://doi.org/10.1016/ j.geodrs.2015.08.005
  11. Kılıc, O.M., Ersayın, K., Gunal, H., Khalofah, A., & Alsubeie, M.S. (2022). Combination of fuzzy-AHP and GIS techniques in land suitability assessment for wheat (Triticum aestivum) cultivation. Saudi Journal of Biological Sciences, 29(4), 2634-2644. https://doi.org/10.1016/j.sjbs.2021.12.050
  12. Kim, Y.J., Nam, B.H., & Youn, H. (2019). Sinkhole detection and characterization using LiDAR-derived DEM with logistic regression. Remote Sensing, 11(13), 1592. https://doi.org/10.3390/rs11131592
  13. Landis, J.R., & Koch, G.G. (1977). A one-way components of variance model for categorical data. Biometrics, 671-679. https://doi.org/10.2307/2529465
  14. Martinez Martinez, L.J., & Muñoz, N.C. (2016). Digital elevation models to improve soil mapping in mountainous areas: case study in Colombia. Geopedology: An Integration of Geomorphology and Pedology for Soil and Landscape Studies, 377-388. https://doi.org/10.1007/978-3-319-19159-1_22
  15. McBratney, A.B., Santos, M.M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1-2), 3-52. https://doi.org/10.1016/S0016-7061(03)00223-4
  16. Mosleh, Z., Salehi, M.H., Jafari, A., Borujeni, I.E., & Mehnatkesh, A. (2016). The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environmental Monitoring and Assessment, 188, 1-13. https://doi.org/10.1007/s10661-016-5204-8
  17. Mousavi, S.R., Sarmadian, F., & Rahmani, A. (2020). Modelling and prediction of soil classes using boosting regression tree and random forests machine learning algorithms in some part of Qazvin plain. Iranian Journal of Soil and Water Research, 50(10), 2525-2538. (In Persian). https://doi.org/10.22059/ijswr.2019.280905.668198
  18. Mousavi, S.R., Sarmadian, F., Omid, M., & Bogaert, P. (2022). Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semi-arid region of Iran. Measurement, 201, 111706. https://doi.org/10.1016/j.measurement.2022.111706
  19. Pu, R., Gong, P., & Yu, Q. (2008). Comparative analysis of EO-1 ALI and Hyperion, and Landsat ETM+ data for mapping forest crown closure and leaf area index. Sensors, 8(6), 3744-3766.‏ https://doi.org/10.3390/s8063744
  20. Roell, Y.E., Beucher, A., Møller, P.G., Greve, M.B., & Greve, M.H. (2020). Comparing a random forest based prediction of winter wheat yield to historical yield potential. Agronomy, 10(3), 395.‏ https://doi.org/10.3390/ agronomy10030395
  21. Roy, D.P., Kovalskyy, V., Zhang, H.K., Vermote, E.F., Yan, L., Kumar, S.S., & Egorov, A. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote sensing of Environment, 185, 57-70.‏ https://doi.org/10.1016/j.rse.2015.12.024
  22. Sarmadian, F., Teimuri Bardiani, S., Rahmani Siyalarz, S., & Sayadi, N. (2022). GIS-based land capability and suitability evaluation for irrigated agriculture (Case study: Karaj-Qazvin). Water and Soil, 36(4), 459-475. (In Persian). https://doi.org/10.22067/jsw.2022.76330.1159
  23. Soil Survey Staff. (2022). Keys to Soil Taxonomy, 13th edition. USDA Natural Resources Conservation Service.
  24. Taghizadeh-Mehrjardi, R., Nabiollahi, K., Rasoli, L., Kerry, R., & Scholten, T. (2020). Land suitability assessment and agricultural production sustainability using machine learning models. Agronomy, 10(4), 573.‏ https://doi.org/ 10.3390/agronomy10040573
  25. Teng, H., Rossel, R.A.V., Shi, Z., & Behrens, T. (2018). Updating a national soil classification with spectroscopic predictions and digital soil mapping. Catena, 164, 125-134.‏ https://doi.org/10.1016/j.catena.2018.01.015
  26. Waruru, B.K., Shepherd, K.D., Ndegwa, G.M., & Sila, A.M. (2016). Estimation of wet aggregation indices using soil properties and diffuse reflectance near infrared spectroscopy: An application of classification and regression tree analysis. Biosystems Engineering, 152, 148-164. https://doi.org/10.1016/j.biosystemseng.2016.08.003

 

CAPTCHA Image