دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد/ مرکز تحقیقات کشاورزی و منابع طبیعی خراسان رضوی

2 دانشگاه فردوسی مشهد

3 دانشگاه صنعتی اصفهان

4 موسسه تحقیقات خاک و آب

چکیده

تبدیل مواد آلی به بیوچار و مصرف آن در خاک، راهکار نوینی است برای تغییر جهت و هدایت "انقلاب سبز" به سمت داشتن "اکوسیستم‌های زراعی پایدار". برای بهره‌مندی از مزایای بیوچار و مشخص کردن محدودیت‌های احتمالی کاربرد آن در خاک‌های کشورمان، بررسی اثر انواع بیوچارها از جنبه‌های مختلف ضروری است. در همین راستا در تحقیقی که به صورت اسپلیت پلات در زمان در قالب طرح کاملاً تصادفی در سه تکرار انجام شد، تأثیر مصرف سه نوع بیوچار مختلف بر pH، شوری و مقدار قابل استفاده فسفر و پتاسیم خاک در مقایسه با مواد اولیه آن‌ها، مورد بررسی قرار گرفت. تیمارهای آزمایش عبارت بودند از: کمپوست زباله شهری، لجن فاضلاب، کود گاوی و بیوچارهای آن‌ها. پس از اعمال تیمارها (بر اساس مصرف وزن‌های یکسان کربن آلی و معادل با 17 تن در هکتار کود گاوی) در نمونه‌های یک کیلوگرمی از یک خاک آهکی با بافت لوم شنی و رساندن رطوبت آن‌ها به حد ظرفیت مزرعه، نمونه‌های تیمار شده، در دمای 25 درجه سانتی‌گراد در انکوباتور، نگهداری شدند. در زمان‌های 10، 30، 60، 120 و 180 روز بعد از شروع آزمایش از خاک‌های تیمار شده نمونه‌برداری شد و فاکتورهای مورد نظر، در آن‌ها اندازه‌گیری شد. بر اساس نتایج بررسی اثرمتقابل تیمار در زمان روی پارامترهای مورد اندازه‌گیری، تحت تأثیر هر یک از تیمارها تغییرات فسفر قابل استفاده خاک با زمان، یک روند اغلب افزایشی معنی‌دار را نشان داد. تغییرات پتاسیم قابل استفاده، pH و شوری خاک با گذشت زمان معنی‌داری نبود. طبق نتایج مقایسه اثر تیمارها، هم بیوچارها و هم مواد اولیه آن‌ها توانایی چشمگیری در افزایش فسفر و پتاسیم قابل استفاده خاک دارا بودند، اما اثر بیوچارها بارزتر بود. فسفر قابل جذب خاک از مقدار 4/6 میلی‌گرم در کیلوگرم در شاهد، به ترتیب به مقادیر 5/11، 7/15، 21، 3/17، 7/40 و 2/25 میلی‌گرم تحت تأثیر هر یک از تیمارهای کمپوست زباله شهری، کود گاوی، لجن فاضلاب، بیوچار کمپوست زباله شهری، بیوچار کود گاوی و بیوچار لجن فاضلاب، افزایش یافت. مصرف این مواد، پتاسیم قابل استفاده خاک را از 75 میلی‌گرم در کیلوگرم به ترتیب به 135، 198، 181، 150، 390 و 81 میلی‌گرم در کیلوگرم خاک رساند. افزایش شوری خاک در تمام تیمارها نسبت به شاهد (عدم مصرف بیوچار یا مواد اولیه آن‌ها) ملاحظه شد. pH خاک در اثر مصرف هر یک از تیمارها نسبت به شاهد کاهش یافت. از این نظر تفاوتی بین بیوچار‌ها و مواد اولیه آن‌ها ملاحظه نشد. با توجه به اثرات بارزتری که بیوچارهای مورد بررسی در این تحقیق در افزایش فسفر و پتاسیم قابل استفاده خاک نسبت به مواد اولیه خود نشان دادند به نظر می‌رسد که بتوان در کاهش مصرف کودهای شیمیایی فسفره و پتاسه، به طور مؤثرتری از آن‌ها بهره جست.

کلیدواژه‌ها

عنوان مقاله [English]

The Influence of Different Biochars and Their Feedstock on Some Soil Chemical Properties and Nutrients over the Time in a Calcareous Soil

نویسندگان [English]

  • majid forouhar 1
  • Reza Khorassani 2
  • Amir Fotovat 2
  • Hossein Shariatmadari 3
  • Kazem Khavazi 4

1 Ferdowsi university of mashhad

2 Ferdowsi University of Mashhad

3 Isfahan University of Technology

4 Soil and Water Research Institute

چکیده [English]

Introduction: Global warming is strongly linked to the increase in greenhouse gas emissions to the atmosphere. One of the most efficient ways to reduce the amount of atmospheric CO2 is to produce a lot of biomass and convert the biomass into a biochar. Biochar is an organic carbon-rich solid that can be obtained from pyrolysis of various organic materials. In other words, biochar can be produced via thermal degradation of many organic materials such as vegetation biomass, animal waste, sewage sludge, etc. in absence or lack of oxygen. Biochar is more resistant to microbial degradation than its feedstock and has a mean resistance time of several decades. In connection with the use of biochar, the most researches have been done in non-fertile and highly weathered soils. The most significant effects of biochar application, have been also observed in strongly acidic soils. In many arid and semi-arid regions of the world, including Iran, the soil organic matter content is low. The lack of organic resources and their instability in the soil are considered as some of the most important challenges in improving soil fertility and plant growth and yield. To improve soil fertility by using insufficient existing organic resources, stabilizing organic matter by converting it into the biochar can be a fundamental strategy. If this strategy is applied in our country with calcareous soils, it is necessary to study the effects of different biochars on calcareous soils from different aspects .In this regard, in the present study, the effect of three types of biochar in a calcareous soil has been investigated in comparison with their feedstock.
Materials and Methods: The effects of three types of biochar and their feedstock in a calcareous soil were investigated in a 6-months period of incubation. A completely randomized design in the form of split plot experiment, was carried out. The main plots were consisted of Control, Municipal Waste Compost (MWC) and its biochar (BMWC), Sewage Sludge (SS) and its biochar (BSS) and Cow Manure (CM) and its biochar (BCW). The sub plots consisted of five sampling times as 10, 30, 60, 120 and 180 days after the beginning of incubation. Application rate of each treatment per kilogram of soil was calculated based on having the same weight of organic carbon content. So that all treatments contained 2.2 grams of organic carbon. After mixing the treatment with soil and adjusting the humidity to the moisture content of the field capacity (FC), they were transferred to the cans (with 3 holes embedded on their doors) and kept at 25°C in the incubator. During the 6-month incubation period, soil moisture was set at FC levels at intervals of two to three days. Sub samples were taken at five times. After air drying the sub samples, the chemical parameters such as EC of 1:2.5 extract, pH of 1:2.5 suspension, available phosphorus (extracted with sodium bicarbonate 0.5N) and available potassium (extracted with ammonium acetate 1N) were measured. After data collection, statistical analysis was performed using SAS software.
Results and Discussion: The soil texture was sandy loam with 21% of clay, 7% of silt and 72% of sand. Soil CaCO3 content and soil organic carbon content was 16% and 0.23% respectively. Available forms of potassium and phosphorous in soil were 76 and 6.3 mg kg-1, respectively. According to the results, under the influence of each treatment, the variation of soil available P, showed a significant increasing trend with the time. Changes in available potassium and soil pH were not significant over the time. Variation of soil salinity with time although showed an increasing trend but was not significant. Comparison of the effects of treatments showed that both biochars and their feedstock could significantly increase the available phosphorus and potassium in soil. In this regard, the effect of biochars was more pronounced than their feedstock. Among the feedstock, ranking for enhancing effect on available P, was SS > CM > MWC and among the biochars, it was BCM > BSS > BMWC. Ranking for enhancing effect on available K, was CM > MWC > SS and BCM > BMWC > BSS among the feedstock and biochars respectively. The increase in available phosphorus and potassium due to the use of biochars were much higher than that of total phosphorus and total potassium added by biochars. The soil pH decreased as a result of the application of each treatment compared to control. In this regard, the significant difference between biochars and their feedstock were not seen. Probable presence of some amounts of pyrogenic carbon with biochars can be one of the reasons for soil pH reduction. Electrical conductivity of 1:2.5 extract of soil was increased by all treatments compared to the control. Except for BSS, two other biochars significantly increased soil salinity more than their feedstock. This increasing effect on soil salinity can be partially due to the existence of some amount of ash accompanied with biochars.
Conclusions: Application of biochars derived from cow manure, sewage sludge or municipal waste compost in this experimental conditions, led to a significant increase in the amount of available phosphorus and potassium in soil compared to control and their feedstock. Therefore, the use of these biochars can have a high potential for reducing the consumption of some chemical fertilizers. From this point of view, the order of the superiority of the coal was as follows: biochar of cow manure > biochar of municipal waste compost> biochar of sewage sludge. The conversion of any of these feedstock to biochar did not have an effect on their potential for soil pH changes. Except for biochar of sewage sludge, in two other biochar, the potential for increasing soil salinity was higher than the feedstock. Considering that the durability of biochar in soil is much higher than that of its feedstock, it is possible to use suitable biochars such as those examined in this study as a great potential for the sustainable improvement of soil fertility and for reducing the use of chemical fertilizers in our country's agriculture. This requires extensive field researches for other soil properties in different soil and water conditions, with different kinds of biochars and crops.

کلیدواژه‌ها [English]

  • Biochar
  • Manure
  • Municipal waste compost
  • Sewage sludge
1- Asai H., Samson B.K., Stephan H.M., Songyikhangsuthor K., Homma K., Kiyono Y., Inoue Y., Shiraiwa T., and Horie T. 2009. Biochar amendment techniques for upland rice production in northern Laos: 1. Soil physical properties, leaf SPAD, and grain yield. Field Crops Res. 111:81–84.
2- Bagreev A., Bandosz T. J., and Locke D. C. 2001. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon, 39: 1971–1977
3- Balali M. R., Mohajer milani P., Khademi Z., Doroudi M. S., Mashaiekhi M. J., and Malakouti M. J. 2000. Fertilizer recommendation for Wheat. Amozesh Issue. (In Persian).
4- Behnam H., Farrokhian Firouzi A., and Moezzi A. 2015. The effect of biochar and compost of sugarcane on soil organic carbon and Aterbreg’s limite. 14th congress of soil science. Rafsanjan. Iran. (In Persian with English abstract).
5- Cetin E., Moghtaderi B., Gupta R., and Wall T. F. 2004. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars’, Fuel, 83: 2139–2150.
6- Colins H. P. 2011. Biochar– agricultur’s black gold: the promise of biochar. Washington State University Extension. Accessible on https://www.ars.usda.gov/ARSUserFile.
7- Glaser B., Guggenberger G., and Zech W. 2004. Amazonian dark earths: Explorations in space and time. Springer-Verlag Berlin Heidelberg., 145–158.
8- Hass A., Gonzalez J.M., Lima I.M., Godwin H.W., Halvorson J.J., and Boyer D.G. 2012. Chicken manure biochar as liming and nutrient source for acid appalachian soil. J. Environ. Qual. 41:1096–1106.
9- Hiemstra T., Mia S., Duhaut P. B., and Molleman B. 2013. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate. Environ Sci Technol. 47: 9182–9189.
10- Ippolito J.A., Novak J.M., Busscher W.J., Ahmedna M., Rehrah D., and Watts D.W. 2012. Switchgrass biochar aff ects two Aridisols. J. Environ. Qual.41:1123–1130.
11- Jeffery S., Verheijen FGA., Vander Velde M., and Bastos A.C. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems &Environment 144, 175–187. doi:10.1016/j.agee. 2011.08.015.
12- Kameyama K., Miyamoto T., Shiono T., and Shinogi Y. 2012. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. J. Environ. Qual. 41:1131–1137.
13- Karer J., Wimmer B., Zehetner F., Kloss S., and Soja G. 2013. Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions. Agr. Food Sci. 22: 390–403.
14- Khavazi K., Balali M. R., Bazargan K., Dawatgar N., Asadi Rahmani H., and Rezaii H. 2014. Integrated Soil Fertility and Nutrition Program, 2014-2025. First volume. Soil and Water Research Institute. Tehran. Iran. (In persian).
15- Kimetu J.M., Lehmann J., Ngoze S.O., Mugendi D.N., Kinyangi J.M., Riha S., Verchot L., Recha J.W., and Pell A.N. 2008. Reversibility of soil productivity decline with organic matter of diff ering quality along a degradation gradient. Ecosystems 11:726–739.
16- Koutcheiko S., Monreal C.M., Kodama H., McCracken T., and Kotlyar L. 2007. ‘Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure’, Bioresource Technology, vol 98, pp2459–2464.
17- Lehmann J., da Silva J.P., Steiner C., Nehls T., Zech W., and Glaser B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 249: 343–357.
18- Lehmann J., and Stephen J. 2009. Biochar for Environmental Management Science and Technology. London. Sterling, VA.
19- Lehmann J., Gaunt J., and Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems a review, Mitigation and Adaptation Strategies for Global Change, vol 11, pp403–427.
20- Lentz R.D., and Ippolito J.A. 2012. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J. Environ. Qual. 41:1033–1043.
21- Lima H.N., Schaefer C.E.R., Mello J.W.V., Gilkes R.J., and Ker J.C. 2002. Pedogenesis and pre-Colombian land us of “Terra Preta Anthrosols” (“Indian black earth”) of western Amazonia. Geoderma 110:1–17.
22- Major J., Lehmann J., Rondon M., and Goodale C. 2010. Fate of soil-applied black carbon: Downward migration, leaching, and soil respiration. Glob. Change Biol. 16:1366–1379.
23- Mao J.D., Johnson R.L., Lehmann J., Olk D.C., Neves E.G., Thompson M.L., and Schmidt-Rohr K. 2012. Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Environ Sci Technol. 46: 9571–9576.
24- Mete F., Mia S., Dijkstra F.A., Abuyusuf M., and Iqbal Hossain A. S. M. 2015. Synergistic Effects of Biochar and NPK Fertilizer on Soybean Yield in an Alkaline Soil. Pedosphere. 25, 5: 713-719.
25- Mukherjee A., and Lal R. 2014. The biochar dilemma. Soil research. 52: 217-230.
26- Najafi ghiri M. 2014. The effect of different biochars on some soil properties and availability of some nutrients in a calcareous soil. Journal of soil researches. 29, 2: 351-358.
27- Novak J.M., Lima I., Xing B., Gaskin J.W., Steiner C., Das K.C., Ahmedna M., Rehrah D., Watts D.W., Busscher W.J., and Schomberg H. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science 3: 195–206
28- Paris O., Zollfrank C., and Zickler G.A. 2005. Decomposition and carbonisation of wood biopolymers a microstructural study of softwood pyrolysis, Carbon, vol 43, pp53–66.
29- Safarzadeh shirazi S., and Rajabi H. 2015. The effect of pistachio residue and its biochar produced in different temperatures on soil pH. 14th congress of soil science. Rafsanjan. Iran. (In Persian with English abstract).
30- Safarzadeh Shirazi S., and Rajabi H. 2015. The effect of pistachio residue and its biochar produced in different temperatures on soil electrical conductivity. 14th congress of soil science. Rafsanjan. Iran. (In Persian with English abstract ).
31- Schnell R.W., Vietor D.M., Provin T.L., Munster C.L., and Capareda S. 2012. Capacity of biochar application to maintain energy crop productivity: Soil chemistry, sorghum growth, and runoff water quality effects. J. Environ. Qual. 41:1044–105.
32- Schnitzer M.I., Monreal C.M., Facey G.A., and Fransham P.B. 2007. The conversion of chicken manure to biooil by fast pyrolysis I. Analyses of chicken manure, biooils and char by C-13 and H-1 NMR and FTIR spectrophotometry. Journal of Environmental Science and Health B, vol 42: 71–77.
33- Singh B., Singh B.P., and Cowie A.L. 2010 Characterization and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research 48: 516–525. doi: 10.1071/SR10058.
34- Sjӧstrӧm E. 1993. Wood Chemistry: Fundamentals and Applications, second edition, Academic Press, San Diego, US.
35- Smith P. 2016. Soil carbon sequestration and biochar as negative emission technologies Global Change Biology, doi: 10.1111/gcb.13178.
36- Spokas K.A., Novak J.M., Stewart C.E., Cantrell K.B., Uchimiya M., DuSaire M.G., and Ro, K.S. 2011. Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85: 869–882. doi:10.1016/j.chemosphere. 2011.06.108.
37- Stresov V., Patterson M., ZymlaV., Fisher K., Evans T.J., and Nelson P.F. 2007. Fundamental aspects of biomass carbonisation, Journal of Analytical and Applied Pyrolysis, 79: 91–100.
38- Van Zwieten L., Kimber S., Morris S., Chan K.Y., Downie A., Rust J., Joseph S., and Cowie A. 2010. Effects of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant Soil. 327:235–246.
39- Zabaniotou A., Stavropoulos G., and SkoulouV. 2008. Activated carbon from olive kernels in a two–stage process: Industrial improvement, Bio Resource Technology, 99: 320–326.
40- Zhang H., Chen C., Gray E., Boyd E., Yang H. and Zhang D. 2016. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma 276: 1–6
41- Zolfi M., Rownaghi A.M., Karimian N., Ghasemi R., and Yasrebi J. 2016. The effect of biochars produced of cheeken manure in different temperatures, on chemical properties of a calcareous soil. Journal of Water and Soil Science.75: 73-86. (In Persian with English abstract).
42- Yoo G., and Kang H. 2012. Eff ects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. J. Environ. Qual. 41:1193–1202.
CAPTCHA Image