دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا

چکیده

به منظور بهبود کمّیت و کیفیت محصول و ارتقاء کیفیت خاک، استفاده بهینه از بهسازهای آلی یک ضرورت است. در مطالعه حاضر، اثر دو بهساز آلی، در مقایسه با کود شیمیایی اوره، بر برخی شناسه­های کیفیت خاک، هم چنین عملکرد و برخی عناصر غذایی گیاه اسفناج بررسی شد. آزمایش در قالب بلوک­های کامل تصادفی، با سه تکرار اجرا گردید. تیمارها شامل کود سبز یونجه (AGM) در دو سطح 1 و 3 درصد، پسماند بستر کشت قارچ (SMS) در دو سطح 2 و 5 درصد، کود اوره (U) در دو سطح 120 و360 کیلوگرم بر هکتار، ترکیب AGM و SMS (SA) در دو سطح 5/1 درصد (به ترتیب 5/0 و 1 درصد) و 4 درصد (به ترتیب 5/1 و 5/2 درصد)، و شاهد بود. نتایج نشان داد کربن آلی خاک، هدایت الکتریکی، پی­اچ، فعالیت آنزیم فسفاتاز، پتاسیم و فسفر فرآهم تحت تأثیر تیمارها قرار گرفتند. تمام تیمارهای پسماند بستر قارچ، کود سبز یونجه و ترکیبی موجب افزایش معنی­دار کربن آلی خاک نسبت به تیمارهای شاهد و کود شیمیایی شدند. تیمار SMS-2 بیشترین افزایش EC را نسبت به تیمارهای شاهد و U-1 (به ترتیب، با 552 و520 درصد افزایش) داشت. کود سبز یونجه نیز موجب افزایش EC خاک نسبت به شاهد شد، با این­حال اثر منفی این بهساز آلی بر شوری خاک کم­تر از SMS بود. از طرفی، در تیمارهای U-2؛ AGM-2؛ SMS-2، SMS-1؛ SA-2 و SA-1 بیشترین کاهش پی­اچ نسبت به تیمار شاهد دیده شد. کاهش پی­اچ در تیمارهای حاوی بهسازهای آلی به دلیل پی­اچ اسیدی اولیه آنها بود. بیشترین محتوای پتاسیم و فسفر فراهم، و فعالیت آنزیم فسفاتاز در تیمار SMS-2 مشاهده شد. عملکرد گیاه و غلظت نیترات، فسفر، آهن، روی، منگنز و مس تحت تاثیر تیمارهای آزمایشی قرار گرفت. تیمارهای بهسازهای آلی (AGM-1، AGM-2؛ SMS-2؛ AS-1 و AS-2) توانستند نیاز کودی گیاه اسفناج را برطرف کنند و عملکرد گیاه را نسبت به دو تیمار کود اوره افزایش دهند. بیشترین غلظت نیترات گیاه در تیمار کود شیمیاییU-2  دیده شد که از حد مجاز فراتر بود. غلظت فسفر گیاه در تیمارهای SMS-2، AGM-2 و دو تیمار ترکیبی به طور معنی­داری بیشتر از تیمارهای کود شیمیایی بود. بیشترین مقدار آهن در گیاه در هر دو سطح پسماند بستر قارچ و تیمار کودسبز یونجه، و کمترین آن در تیمار U-2 مشاهده شد. هر دو بهساز آلی باعث افزایش معنی­دار منگنز گیاه نسبت به دو تیمار کود شیمیایی شدند. با این حال، تنها تیمار پسماند بستر قارچ (SMS-2) توانست غلظت روی در گیاه را به طور معنی­داری نسبت به تیمارهای کودی افزایش دهد. با توجه به اینکه سطوح بالای تیمارهای کود سبز یونجه و تیمار ترکیبی، علی‌رغم افزایش عملکرد گیاه و ارتقاء کیفیت خاک، موجب تجمع نیترات در مرز بحرانی، در گیاه اسفناج شدند، و از طرف دیگر استفاده مداوم از سطح بالای کمپوست بستر قارچ خطر شور شدن خاک را به همراه دارد، تیمار ترکیبی SA-1 ، و پس از آن تیمار پسماند بستر قارچ SMS-1 به عنوان مناسب­ترین تیمارها از نظر بهبود کیفیت خاک و بهبود عملکرد و کیفیت اسفناج شناخته شد.
 
[1]- Alfalfa green manure
[2]- Spent mushroom substrates

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effects of Spent Mushroom Substrates and Alfalfa Green Manure on Selected Fertility Indicators of Soil Quality and Spinach’s Nutrients

نویسندگان [English]

  • Tahmeineh Gheitasi Ranjbar
  • M. Nael

Department of Soil Science, Faculty of Agriculture, Bu-Ali Sina university

چکیده [English]

Introduction
Conventional cropping systems, dependent on heavy application of chemical fertilizers, are not ecologically and environmentally sustainable; they are a threat for soil and water quality and, in consequence, for plant and human health. Nitrogen fertilizers are heavily applied in conventional leaf vegetable production systems to obtain maximum growth and yield. However, the excess nitrogen tends to accumulate in leaf vegetables in the form of nitrate, which pose serious human health hazards. Therefore, to supply nitrogen from non-chemical sources, such as organic amendments, is a sustainable practice for production of leaf vegetables. Spent mushroom substrate (SMS), which is the remaining material after the harvest of mushroom, is produced in large quantities (5 kg SMS for 1 kg of mushroom) and is enriched with organic carbon, N, P, K, and micronutrients. Therefore its reuse as a soil amendment not only provides essential elements for plants but also improves soil quality. Similarly, incorporation of green manures, especially legume green manures, into cropping systems is a sustainable practice for soil fertility and soil quality management. In this study, we aimed to investigate the short-term effects of two soil organic amendments (spent mushroom substrate and alfalfa residues) and their combination, in comparison to inorganic N fertilizer (urea), on soil fertility, and selected essential nutrients, and nitrate accumulation in a leaf vegetable, test plant (spinach).    
Materials and Method
A one-season pot experiment was led in a randomized complete block design with three replications in experimental greenhouse of Bu-Ali Sina University. Treatments were comprised of two levels of spent mushroom substrate (SMS-1: 2% SMS, and SMS-2: 5% SMS), two levels of alfalfa green manure (AGM-1: 1% AGM, and AGM-2: 3% AGM); two levels of the mixture of SMS and AGM (SMS+AGM-1: 1% SMS plus 0.5% AGM; and SMS+AGM-2: 2.5% SMS plus 1.5% AGM);  two levels of urea fertilizer (U-1; 120 kg/ha, and U-2: 360 kg/ ha); and control. Selected properties of the initial soil and both organic amendments were determined. Spinach (Spinacea oleracea L.) was seeded as leaf vegetable, test plant in early autumn 2017. After ten weeks, spinach were harvested and the aboveground and root dry weights were determined. Moreover, the content of NO3-, P, Fe, Cu, Zn, and Mn in edible parts were measured. Soil samples were analyzed for EC, pH, total organic carbon, available P and K, and alkaline phosphatase activity.
Results and Discussion
All soil quality indicators were significantly affected by the treatments. TOC was significantly increased in all of the organic treatments compared to the chemical and control treatments. The maximum increase in TOC was observed in SMS-2, SMS+AGM-2, and AGM-2 treatments, compared to the control (134, 130 and 107%, respectively). A decreasing trend in TOC was detected in the high level of urea treatment (U-2) compared to the control which can be explained by the faster decomposition of soil organic matter in the presence of higher inorganic N inputs. Both organic amendments (in both levels) and the higher level of urea (U-2) decreased soil pH compared to the control. The initial low pH of SMS (5.6) and AGM (6.2), in the first case, and oxidation of urea to nitrate, in the latter, may justify this observation. In contrast, soil EC increased under the both organic amendments relative to the control and U-1 treatments. Moreover, the adverse effect of SMS on soil salinity was greater than AGM due to the initial differences in their corresponding source materials (5.8 vs. 3.0 ds/m). Available K was significantly increased in the second level of all organic treatments compared to the chemical and control treatments. As for available P, all organic treatments, except AGM-1, led to the significantly higher P than the chemical and control treatments. It is reported that organic materials compete with mineral particles for P adsorption and increase its availability. Moreover, all organic treatments, except SMS-1, significantly increased phosphatase activity compared to the chemical and control treatments. This could contribute to the mineralization of organic materials and increase available P.   
Spinach yield was affected by the experimental treatments. The highest increase in shoot dry weight occurred in SMS+AGM-2 and AGM-2 treatments by 235 and 230%, respectively, compared to the control. Moreover, the second level of all organic treatments as well as the first level of SMS plus AGM treatment significantly increased yield compared to the chemical treatments. Spinach P content was significantly higher in all organic treatments, except SMS-1 and AGM-1, compared to the chemical and control treatments. Organic amendments, by decreasing the surface adsorption of P and increasing soil microbial biomass, promote the availability of P for plants. Spinach nitrate content ranged from 265 (in control) to 7807 mg/kg (in U-2). According to the critical limit of nitrate in spinach (4000 mg/kg) presented by European Union, only U-2 treatment led to over-accumulation of NO3-. The two levels of AGM treatments and SMS+AGM-2 resulted in the comparable amounts of nitrate as the recommended amount of urea (U-1). A narrow variation in spinach Cu content (from 6.1 in SMS+AGM-2 to 9.8 mg/kg in AGM-2), all within the standard range reported for plants (5-20 mg/kg), was observed among the treatments. Spinach Fe content was increased under all organic treatments relative to the control, although some disparities were not significant. The lowest Fe was detected in U-2. It is reported that excessive N may diminish root growth and, in turn, reduce nutrient uptake. Spinach Zn content varied from 44.8 (in control) to 71.5 mg/kg (in SMS-2), which was close to the higher limit of standard range (20-50 mg/kg) reported for vegetables, but lower than toxic concentration range (200-400 mg/kg). Spinach Mn content varied from 17.4 (in control) to 32.1 mg/kg (in SMS-2), which was close to the lower limit of the standard range (40-400 mg/kg) reported for plants.
Conclusion
The most appropriate treatments in view of improving yield and soil quality (i.e., optimum TOC, P, and K; and lower EC) as well as tolerable nitrate accumulation were SMA+AGM-1 and SMS-1 in decreasing order. These treatments are preferred over the chemical treatments (U-1 and U-2). 
 

کلیدواژه‌ها [English]

  • Micronutrients
  • Nitrate accumulation
  • Organic amendment
  • Soil quality
  • Sustainable agriculture
  1. Anjana, S.U., & Iqbal, (2007). Nitrate accumulation in plants, factors affecting the process, and human health implications. A Review. Agronomy for Sustainable Development 27(1): 45-57.
  2. Banik, S., & Dey, (1982). Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing micro-organisms. Plant and Soil 69(3): 353-364.
  3. Bora, F.D., Bunea, C.I., Rusu, T., & Pop, N. (2015). Vertical distribution and analysis of micro-, macroelements and heavy metals in the system soil-grapevine-wine in vineyard from North-West Romania. Chemistry Central Journal 9(1): 1-13. https://doi.org/1186/s13065-015-0095-2.
  4. Bower, C.A., Reitemeier, R., & Fireman, (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science 73(4): 251-262. https://doi.org/10.1097/00010694-195204000-00001.
  5. Cabilovski, R., Manojlovic, M., Bogdanovic, D., Magazin, N., Keserovic, Z., & Sitaula,K. (2014). Mulch type and application of manure and composts in strawberry (Fragaria× ananassa Duch.) production: impact on soil fertility and yield. Zemdirbyste-Agriculture 101(1).
  6. Dabighi, K., Fateh, E., & Aynehband, A. (2017). The study of nitrogen efficiency indices of canola (Brassica napus) under different green manure crops and nitrogen sources. Fleld Crops Research 15(2): 413-424. (In Persian with English abstract)
  7. Deshpande, H.H., & Devasenapathy, P. (2010). Effect of green manuring and organic manures on yield, quality and economics of rice (Oryza sativa) under lowland condition. Karnataka Journal of Agricultural Sciences 23(2): 235-238. https://doi.org/10.1017/S0021859600082198.
  8. Dhillon, K., Yagodeen, B., & Pleshkov, A. (1983). Micronutrients and nitrogen metabolism. Plant and Soil 73(3): 355-363.
  9. Dobermann, A., Witt, C., Abdulrachman, S., Gines, H., Nagarajan, R., Son, T., Tan, P., Wang, G., Chien, N., & Thoa, V. (2003). Soil fertility and indigenous nutrient supply in irrigated rice domains of Asia. Agronomy Journal 95(4): 913-923. https://doi.org/10.2134/agronj2003.9130.
  10. European Union. (2002). Commission Regulation (EC) No563/2002 of 2 April 2002 amending regulation (EC) No466/2001 setting maximum levels for certain contaminants infoodstuffs. Official Journal 77: 1-13. https://op.europa.eu/en/publication-detail/-/publication/87610dae-c48e-46bf-9413-3b4d633e6f38
  11. Food and Agriculture Organisation, 2021. FAOSTAT database. http://www.fao. 2012 Available from
  12. Fathi Gerdelidani, A., Mirseyed Hosseini, H., & Farahbakhsh, (2016). Effect of spent mushroom compost (SMC) and sugar cane bagasse biochar on availability and fractions of inorganic phosphorus in a calcareous soil. Agricultural Engineering Soil Science and Agricultural Mechanization,(Scientific Journal of Agriculture) 39(1): 127-144. (In Persian with English abstract)
  13. Gee, G., & Bauder, (1986). Particle-size analysis 1: Soil science society of America: American Society of Agronomy Madison, WI. https://doi.org/10.2136/sssabookser5.4.c12.
  14. Gobbi, V., Nicoletto, C., Zanin, G., & Sambo, P. (2018). Specific humus systems from mushrooms culture. Applied Soil Ecology 123: 709-713. https://doi.org/10.1016/j.apsoil.2017.10.023Get rights and content.
  15. Goldberg, S.P., Smith, K.A., & Holmes, J.C. (1983). The effects of soil compaction, form of nitrogen fertiliser, and fertiliser placement on the availability of manganese to barley. Journal of the Science of Food and Agriculture 34(7): 657-670. https://doi.org/10.1002/jsfa.2740340702.
  16. Gülser, F. (2005). Effects of ammonium sulphate and urea on NO3 and NO2 accumulation, nutrient contents and yield criteria in spinach. Scientia Horticulturae 106(3): 330-340.
  17. Heidari, N., Alizadeh, Y., & Alizadeh, H. (2019). Investigating the Interaction of salinity, drought and nitrogen fertilizer stresses on some physiological traits, yield and yield components of maize (Zea mays). Environmental Stresses in Crop Sciences 12(3): 889-905. (In Persian with English abstract)
  18. Helmke, P.A., & Sparks, D.L. (1996). Lithium, sodium, potassium, rubidium, and cesium. Methods of soil analysis: Part 3 chemical methods 5: 551-574.
  19. Iyamuremye, F., Dick, R., & Baham, J. (1996). Organic amendments and phosphorus dynamics: I. Phosphorus chemistry and sorption. Soil Science 161(7): 426-435.
  20. Jalali, M. (2011). Comparison of potassium release of organic residues in five calcareous soils of western Iran in laboratory incubation test. Arid Land Research and Management 25(2): 101-115.
  21. Jalali, M. (2013). Soil Fertility. Bu Ali Sina University Publishing Center.
  22. Jaworska, G. (2005). Content of nitrates, nitrites, and oxalates in New Zealand spinach. Food Chemistry 89(2): 235-242.
  23. Jordan, S.N., Mullen, G.J., & Murphy, M. (2008). Composition variability of spent mushroom compost in Ireland. Bioresource Technology 99(2): 411-418.
  24. Kansal, B., Singh, B., Bajaj, K., & Kaur, G. (1981). Effect of different levels of nitrogen and farmyard manure on yield and quality of spinach (Spinacea oleracea ). Plant Foods for Human Nutrition 31(2): 163-170. https://doi.org/10.15159/jas.21.21.
  25. Khamadi, F., Mesgarbashi, M., Hasibi, P., Farzaneh, M., & Enayatzamir, (2015). Influence of crop residue and nitrogen levels on nutrient content in grain wheat. Applied Field Crops Research 28(4): 158-166. (In Persian with English abstract)
  26. Lee, C.H., Do Park, K., Jung, K.Y., Ali, M.A., Lee, D., Gutierrez, J., & Kim,J. (2010). Effect of Chinese milk vetch (Astragalus sinicus L.) as a green manure on rice productivity and methane emission in paddy soil. Agriculture, Ecosystems & Environment 138(3-4):343-347. https://doi.org/10.1016/j.agee.2010.05.011.
  27. Li, F., Kong, Q., Zhang, Q., Wang, H., Wang, L., & Luo, T. (2020). Spent mushroom substrates affect soil humus composition, microbial biomass and functional diversity in paddy fields. Applied Soil Ecology 149: https://doi.org/10.1016/j.apsoil.2019.103489.
  28. Liu, M., Hu, F., Chen, X., Huang, Q., Jiao, J., Zhang, B., & Li, (2009). Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: the influence of quantity, type and application time of organic amendments. Applied Soil Ecology 42(2): 166-175. https://doi.org/10.1016/j.apsoil.2009.03.006.
  29. Matos, E.D.S., Mendonça, E.D.S., Lima, P.C.D., Coelho, M.S., Mateus, R.F., & Cardoso, I.M. (2008). Green manure in coffee systems in the region of Zona da Mata, Minas Gerais: characteristics and kinetics of carbon and nitrogen mineralization. Revista Brasileira de Ciência do Solo 32: 2027-2035.
  30. Medina, E., Paredes, C., Bustamante, M., Moral, R., & Moreno-Caselles, (2012). Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma 173: 152-161. https://doi.org/10.1016/j.geoderma.2011.12.011.
  31. Mohammadi, G., Safari-Poor, M., Eghbal Ghobadi, M., & Najaphy, A. (2015). The effect of green manure and nitrogen fertilizer on corn yield and growth indices. Journal of Agricultural Science and Sustainable Production 25(2): 105-124.
  32. Mohd Hanafi, F.H., Rezania, S., Mat Taib, S., Md Din, M.F., Yamauchi, M., Sakamoto, M., Hara, H., Park, J., & Ebrahimi, S.S. (2018). Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview. Journal of Material Cycles and Waste Management 20(3): 1383-1396. https://doi.org/10.1007/s10163-018-0739-0.
  33. Murcia, M., Vera, A., Ortiz, R., & Garcia-Carmona, F. (1995). Measurement of ion levels of spinach grown in different fertilizer regimes using ion chromatography. Food Chemistry 52(2): 161-166. https://doi.org/10.1016/0308-8146(94)P4198-O.
  34. Olsen, S.R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate: US Department of Agriculture.
  35. Rahmanian, M., Esmaielpour, B., Hadian, J., & ShahriariI,H. (2017). Effect of vermicompost and spent mushroom compost on growth and micronutrients content in Summer savory (Satureja hortensis L.). Journal of Agroecology 7(2): 61-77. (In Persian with English abstract)
  36. Talgre, L., Lauringson, E., Roostalu, H., & Astover, A. (2009). The effects of green manures on yields and yield quality of spring wheat. Agronomy Research 7(1): 125-132.
  37. Thomas, G.W. (1996). Soil pH and soil acidity. Methods of soil analysis: Part 3 chemical methods 5: 475-490. https://doi.org/10.2136/sssabookser5.3.c16.
  38. Torabian, A., & Mahjouri, M. (2002). Heavy metals uptake by vegetable crops irrigated with waste water in south Tehran. Journal of Environmental Study 16(2). (In Persian). https://doi.org/10.1016/j.enmm.2021.100475.
  39. Vahabi, F., Mirseyed Hosseini, H., & Shorafa, M. (2011). Effects of spent mushroom compost (SMC) application on some chemical properties of a sandy loam soil and leachate. Soil Research 25(1): 49-60. (In Persian with English abstract). https://doi.org/10.5194/se-8-1153-2017.
  40. Vahabi, M.F., Mirseyed, H.H., Shorafa, M., & Hatami, (2008). Investigation of the effects of spent mushroom compost (SMC) application on some chemical properties of soil and leachate. Journal of Water and Soil 22(2): 394-406. (In Persian with English abstract).
  41. Verma, N.K., & Pandey,K. )2013(. Effect of varying rice residue management practices on growth and yield of wheat and soil organic carbon in rice-wheat sequence. Global Journal of Science Frontier Research Agriculture and Veterinary Sciences 13(3): 32-38. https://doi.org/10.5958/0976-4038.2016.00090.7.
  42. Walkley, A., & Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1): 29-38. https://doi.org/10.1080/00103629209368599.
  43. Wang, J., Zhou, Y., Zhou, C., Shen, Q., & Putheti, R. )2009(. Effects of NH4+-N/NO3--N ratios on growth, nitrate uptake and organic acid levels of spinach (Spinacia oleracea). African Journal of Biotechnology 8(15). https://doi.org/10.1017/S0014479714000192.
  44. Ysart, G., Clifford, R., & Harrison, N. (1999). Monitoring for nitrate in UK-grown lettuce and spinach. Food Additives & Contaminants 16(7): 301-306. https://doi.org/10.1080/026520399283966.
  45. Zanella, A., Ponge, J.F., Guercini, S., Rumor, C., Nold, F., Sambo, P., Gobbi, V., Schimmer, C., Chaabane, C., & Mouchard,L. )2018(. Humusica 2, article 16: Techno humus systems and recycling of waste. Applied Soil Ecology 122: 220-236. https://doi.org/10.1016/j.apsoil.2017.09.037.
  46. Zhong, W., & Cai, )2007(. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Applied Soil Ecology 36(2-3): 84-91. https://doi.org/10.1016/j.apsoil.2006.12.001.

 

CAPTCHA Image