دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه زنجان

2 دانشگاه جیرفت

چکیده

تندی تجزیه‌ کربن و نیتروژن آلی مانده های گیاهی توسط عواملی پرشماری از جمله ویژگی‌های فیزیکی، شیمیایی و بیولوژیکی خاک مهار می-شود. فلزهای سنگین با آلوده ساختن خاک و تغییر ویژگی‌های شیمیایی و بیولوژیکی آن دینامیک کربن و نیتروژن آلی را تحت پیامد قرار می‌دهند. با توجه به اینکه میزان زهری بودن فلزهای سنگین گوناگون متفاوت بوده و تندی تجزیه مانده‌های گیاهی تحت پیامد غلظت فراهم فلزهای سنگین قرار می‌گیرد، هدف این پژوهش بررسی پیامد غلظت‌های گوناگون کادمیوم خاک بر کانی شدن کربن و نیتروژن آلی بود. برای بررسی پیامد آلودگی خاک به کادمیوم بر کانی شدن کربن و نیتروژن آلی مانده های گیاه گندم، یک آزمایش به‌روش کیف‌کلش و به‌گونه گلدانی و با آرایش فاکتوریل در قالب طرح کاملأ تصادفی با سه تکرار انجام شد. فاکتورهای بررسی شده شامل سطوح آلودگی خاک به کادمیوم (صفر، 10، 20، 40 و 80 میلی‌گرم کادمیوم در کیلو‌گرم خاک) و زمان (1، 2، 3 و 4 ماه) خوابانیدن مانده ها بودند. نتایج تجزیه‌ی واریانس داده‌ها نشان داد که سطوح کادمیوم خاک و زمان خوابانیدن پیامد معنی‌داری بر میزان هدررفت و ثابت تندی تجزیه‌ی کربن و نیتروژن آلی داشتند. نتایج آزمون میانگین‌ها نشان داد که با افزایش غلظت کادمیوم خاک به بیش از 10 میلی‌گرم در کیلو‌گرم میزان هدررفت کربن و نیتروژن آلی از مانده‌های گندم به‌طور معنی‌دار کاهش یافت و کمترین درصد هدررفت کربن و نیتروژن آلی مربوط به سطح 80 میلی‌گرم کادمیوم در کیلو‌گرم خاک بود. میزان هدررفت کربن آلی از مانده‌های گندم در یک ماه بعد از خوابانیدن 78/30 درصد و در سه ماهه بعدی خوابانیدن 74/9 درصد و در مجموع 52/40 درصد برای یک دوره چهار ماهه بود. میزان هدررفت نیتروژن آلی از مانده‌های گندم نیز در یک‌ماه بعد از خوابانیدن 69/23 درصد ودر سه ماهه بعدی خوابانیدن 56/8 درصد و در مجموع 25/32 درصد برای یک دوره چهار ماهه بود. آلودگی خاک به کادمیوم مایه کندشدن چرخه کربن و نیتروژن شده و به نگه‌داشت بیشتر این عناصر در خاک کمک می کند.

کلیدواژه‌ها

عنوان مقاله [English]

Mineralization of 0rganic Carbon and Nitrogen of Wheat strawresidue in Cadmium Contaminated Soils

نویسندگان [English]

  • zeinab bigdeli 1
  • ahmad golchin 1
  • saeid shafiei 2

1 University of Zanjan

2 university of Jiroft

چکیده [English]

Introduction: Dynamics of organic carbon and nitrogen are controlled by several factors, including physical, chemical and biological properties of soil. Heavy metals contaminate soils and change soil properties and affect organic carbon and nitrogen dynamics. Since toxicities of heavy metals are different and organic carbon and nitrogen dynamics are affected by available concentrations of these metals, the aims of this experiment were to assess the effects of different levels of soil cadmium on mineralization of organic carbon and nitrogen.
Materials and Methods: To assess the effects of different levels of soil cadmium on mineralization of organic carbon and nitrogen, a factorial pot experiment was conducted using litter bag method. The factors examined were different levels of soil cadmium (0, 10, 20, 40, and 80 mg kg -1soil) and incubation periods (1, 2, 3 and 4 months) that were applied in three replications. Soil samples were artificially contaminated with cadmium to desirable levels using cadmium sulfate and the samples were placed in plastic pots and the pots incubated at constant moisture and temperature for one month. Then litter bags containing 15 g wheat residues were buried in pots and incubated for different periods of time. At the end of incubation periods, the remaining amounts of plant residues were measured and analyzed for organic carbon and nitrogen concentrations using Walkley and Black and Kjeldahl methods respectively. The decomposition rate constants of organic carbon and nitrogen were calculated using Mt = M0 e –kt equation. Organic carbon and nitrogen losses were calculated by subtracting the remaining amounts of organic carbon and nitrogen in one incubation time interval from those of former one.
Results and Discussion: The results showed that the effects of soil cadmium levels and incubation periods were significant on organic carbon and nitrogen mineralization. The losses of organic carbon and nitrogen from wheat residues decreased as the levels of soil cadmium increased. The highest and the lowest organic carbon and nitrogen losses were measured in control and treatments with 80 mg Cd kg -1 soil respectively. Increase in soil cadmium levels decreased the losses of organic carbon and nitrogen from wheat residue. The losses of organic carbon for a period of four months were 37.54, 37.21, 36.11, 35.12 and 33.69 (%) in treatments with soil cadmium levels of 0, 10, 20, 40 and 80 mg kg -1 respectively. The loss of organic carbon in the first month of incubation was (30.78%) and in the other three months of incubation was (9.74%) with a sum of (40.52%) for a period of 4 months. Similarly, the loss of organic nitrogen in the first month of incubation was 23.69% and in the other three months of incubation was 8.56% with a sum of 32.25 (%) for a period of 4 months. The highest losses of organic nitrogen from wheat straw residue were measured in treatment of control cadmium (31.64 percent) and lowest losses of organic nitrogen (23.86percent) related to treatment with 80 mg of cadmium / kg of soil. The losses of organic nitrogen, after 4 months were 31.64, 30.69, 28.68, 26.25, and 23.86 (%) when treatment of cadmium contamination of soil was 0, 10, 20, 40 and 80, respectively. The decomposition rate constants for organic carbon were 0.0076, 0.0075, 0.0073, 0.0070 and 0.0066 day -1 when soil cadmium levels were 0, 10, 20, 40, and 80 mg kg -1 respectively. The rate constants for organic nitrogen at the mentioned soil cadmium levels were also 0.0061, 0.0059, 0.0054, 0.0048 and 0.0044 day -1 respectively.
Conclusions: The results of this research indicate that contamination of soils by heavy metals increases the residence time of organic carbon and nitrogen in soils and slows down the cycling of these elements. The mineralization rate of organic nitrogen was affected by soil cadmium levels more than that of organic carbon. The amounts of organic carbon and nitrogen losses are higher in the first month of incubation than those of other months and decomposition of wheat residue had a fast and a slow stage. The results of this study indicate that due to the adverse effects of heavy metals on soil organisms, mineralization rate of plant residue carbon is slower in polluted soils compared with non polluted soils.

کلیدواژه‌ها [English]

  • Contaminated Soil
  • Decomposition rate constants
  • Heavy metals
  • Litter bag
  • Incubation periods
1. Alloway B. J. 1995. Heavy metals in moils. Blackie Academic and Professional. New York.
2. Andersson A.1992. Trace elements in agricultural soils, fluxes and balances. Swedish Environmental Protection Ageney. Report 4077.
3. Baath E. 1989. Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air and Soil Pollution, 47:335-379.
4. Berg B. and Matzner, E., 1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Reviews, 5(1), pp.1-25.
5. Bremner J. M. and Mulvaney, C. S. 1982. Nitrogen total. pp. 595- 624. In: A. L. Page., R. H.Miller. And D. R. Keeney (eds.). Methods of soil analysis. Part 2. Chemical analysis. American Society of Agronomy Inc. and Soil Science Society of American Inc. Madison, W I.
6. Bremner J. M. 1996. Nitrogen – Total. pp. 1085-1122. In Sparks D. L, et al (Eds.), Methods of Soil Analysis. SSSA, Inc. ASA, Inc. Madison, WI.
7. Cotrufo M. F., Virzo dc Santo, A., Alfani, A., Bartoli, G. and De Cristofaro, A. 1995. Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. woods. Environmental Pollution. 89(1): 81–87.
8. Chen Y.P, Liu Q. , Liu Y. J. , Jia F. A. , He X. H. 2014. Responses of soil microbial activity to cadmium pollution and elevated CO2. Scientific Reports. doi:10.1038/srep04287.
9. Chaney W.R., Kelley J.M. and Strickland R.C. 1978. Influence of cadmium and zinc on carbon dioxide evolution from litter and soil from a black oak forest. Journal of Environmental Quality. 7: 115–119.
10. Cornwell W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T ., Godoy, O., Hobbie, S.E., Hoorens, B., Kurokawa, H., Perez-Harguindeguy, N., Quested, H.M., Santiago, L.S.,Wardle, D.A.,Wright, I.J., Aerts, R., Allison, S.D., van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T.V., Diaz, S., Garnier, E., Gurvich, D.E., Kazakou, E., Klein, J.A., Read, J., Reich, P.B., Soudzilovskaia, N.A., Vaieretti, M.V., Westoby, M., 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065e1071.
11. Dai J., Becquer, T., Rouiller, J. H., Reversat, G., Bernhard-Reversat, F.and Lavelle, P. 2004. Influence of heavy metals on C and N mineralisation and microbial biomass in Zn, Pb, Cu, and Cd contaminated soils. Applied Soil Ecology. 25(2): 99-109.
12. Day R. 1965. Particle fractionation and particle size analysis. pp. 545-566, In: Black, C. A. et al (Eds), Methods of soil analysis. Part 1. Ser. No. 9. ASA. Madison, WI.
13. Duong T.T.T., 2009. Dynamics of plant residue decomposition and nutrient release (Doctoral dissertation, The University of Adelaide, Australia).
14. Ernest W. H. O. 1996. Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry. 11: 163-167.
15. Freitas A. C., Rodrigues, D., Rocha-Santos, T. A., Gonçalves, F., Duarte, A. C. and Pereira, R. 2014. The impact of uranium mine contamination of soils on plant litter decomposition. Archives of Environmental Contamination and Toxicology. 67(4):601-616.
16. Gallardo A. and Merino,J. 1993. Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influenceof substrate quality. Ecology. 74:152–161.
17. Gee GW. and Bauder, JW. 1986. Physical and Mineralogical Methods. pp. 383-409. In: Clute A (ed). Methods of Soil Analysis, part 1. ASA and SSSA, Medison Wisconsin.
18. Gregorich E. G., Beare, M. H., Stoklas, U. and St-Georges, P. 2003. Biodegradability of soluble organic matter in maize-cropped soils. Geoderma. 113(3): 237-252.
19. Goering H. K. and P. J. Van Soests. 1970. Forage fiber analysis (A pparatus, reagents, procedures and Some applications). USDA Hand book NO. 397. US. Government printing office. Washington, Dc.
20. Hassan Dar G.H. and Mishra, M. M. 1994. Influence of cadmium on carbon and nitrogen in sewage sludge amended soils. Environmental Pollution. 84: 285-290.
21. Hassen A., Jedidi, N., Cherif, M., M'Hiri, A., Boudabous, A. and Van Cleemput, O. 1998. Mineralization of nitrogen in a clayey loamy soil amended with organic wastes enriched with Zn, Cu and Cd. Bioresource Technology. 64(1): 39-45.
22. Hendricks C.W., 1996. The Effect of toxic chemicals on nutrient cycling processes in soils. pp. 235-270. In: Tarredellas, J., Bitton, G.and Rossel, D. (eds.), Soil Ecotoxicology. Lewis, New York.
23. Jalil A., Selles, F. and Clark, J. M. 1994. Effect of Cd on growth and uptake of Cd and other elements by durum wheat. Journal of Plant Nutrition. 17:1839-1858.
24. Kandeler E, Tscherko D, Bruce KD, Stemmer M, Hobbs PJ, Bardgett RD and Amelung W, 2000. Structure and function of the soil microbial communities in microhabitats of a heavy metalpolluted soil. Biol Fertil Soil. 32: 390-400.
25. Karaca A., Naseby D.C. and Lynch J.M. 2002. Effect of cadmium contamination with sewage sludge and phosphate fertilizer amendments on soil enzyme activities, microbial structure and available cadmium, Biology and Fertility of Soils, 35:428–434.
26. Kumar K. and Goh, K.M., 2000. Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Advances in Agronomy. 68, pp.197-319.
27. Larson W. E. and Pierce, F. J. 1991. Conservation and enhancement of soil quality. pp. 175-203. In: Evaluation for Sustainable Land Management in the Developing World. IBSRAM Proc., 12th, Bangkok, Thailand.
28. Lindsay W. L. and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J. 42: 421-428.
29. Liao M. and Xiao, M. 2007 Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotoxicology and Environmental Safety. 66(2):217-223.
30. Marschner B. and Kalbitz, K. 2003. Control of bioavailabilityandbiodegradation of dissolved organic matter in soils. Geoderma. 113 (3-4): 211–235.
31. McGrath S. P., Zhao, F. J. and Lombi, E. 2001. Plant and rhizosphere processes involved in phytoremediation of metalcontaminated soils. Plant and Soil. 232: 207–214.
32. Murungu F. S., Chiduza, C., Muchaonyerwa. P. and Mnkeni, P. N. S. 2011. Decomposition, nitrogen and phosphorus mineralization from winter-grown cover crop residues and suitability for a smallholder farming system in South Africa. NutrCyclAgroecosyst. 89:115–123.
33. Montserra D., B. Earland. and F. Asa. 1994. Multiple heavy metal tolerance of soil bacterial communities and its measurment by a thymidine incorporation Technique. Appli & Envir Microbiol. 60: 2238-2247.
34. Nelson D. W. and Sommer, L. E. 1982. Total carbon, organic carbon, and organic matter. pp. 595- 624. In: Page, A. L. (eds.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy. Madison, W I.
35. Olson J. S. 1963. Energy storage and balance of producers and decomposition in ecological systems. Ecology. 44: 322- 331.
36. Page A. L., R. H. Miller. and D. R. Keeney. 1982. Chemical microbiological properties. pp. 1-1143. In: Page A. L et al (Eds.), Methods of soil analysis. Part 2. American Society of Agronomy. Inc. Soil Science of America. Inc. Madison, Wisconsin, USA.
37. Rottmann N., Dyckmans, J. and Joergensen, R.G., 2010. Microbial use and decomposition of maize leaf straw incubated in packed soil columns at different depths. European Journal of Soil Biology. 46(1), pp.27-33.
38. Van Nevel L., Mertens, J., Demey, A., De Schrijver, A., De Neve, S., Tack, F. M. and Verheyen, K. 2014. Metal and nutrient dynamics in decomposing tree litter on a metal contaminated site. Environmental Pollution. 189: 54-62.
39. Vaieretti M. V., Harguindeguy, N. P., Gurvich, D. E., Cingolani, A. M., and Cabido, M. (2005). Decomposition dynamics and physico-chemical leaf quality of abundant species in a montane woodland in central Argentina. Plant and soil. 278(1-2), 223-234.
40. Vasquez-Murrieta M. S., I. Migueles-Garduño, O. Franco-Hernandez, B. Govaerts. and L. Dendooven. 2006. C and N mineralization and microbial biomass in heavy-metal contaminated soil. European journal of soil biology. 42(2): 89-98.
41. Wickings K., Grandy, A.S., Reed, S.C., Cleveland, C.C., 2012. The origin of litter chemical complexity during decomposition. Ecol. Lett. 15,1180-1188.
CAPTCHA Image