دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه صنعتی اصفهان

2 دانشگاه رازی، کرمانشاه

چکیده

گرد و غبار یک منبع مهم فلزات سنگین به‌ویژه در محیط زیست شهری است. فلزات سنگین با اتصال به ذرات گرد و غبار می‌توانند در مقیاس وسیعی منتشر شوند. هدف از این مطالعه، بررسی غلظت برخی فلزات سنگین و وضعیت سطوح آلودگی آن‌ها در گرد و غبار استان کرمانشاه با استفاده از شاخص‌های مختلف آلودگی بود. جهت انجام این مطالعه تعداد 49 نمونه گرد و غبار از شهرستان‌های کرمانشاه، سنقر، گیلان‌غرب، قصرشیرین، صحنه، سرپل‌ذهاب، کنگاور، پاوه و جوانرود طی فصل تابستان 1392 جمع‌آوری شد. غلظت کل فلزات Zn، Cu، Ni، Cr، Mn و Fe در نمونه‌های گرد و غبار اندازه‌گیری شد. میانگین غلظت Zn، Cu، Ni، Cr، Mn و Fe به ترتیب 238، 47، 124، 74، 495 و 28704 (mg kg−1) به‌دست آمد. از شاخص‌های زمین‌انباشتگی، فاکتور غنی‌شدگی، شاخص آلودگی و شاخص جامع آلودگی جهت تعیین میزان آلودگی نمونه‌های گرد و غبار استفاده گردید. نتایج مطالعه نشان داد که غلظت فلزات در گرد و غبار به‌جز برای آهن و منگنز در مقایسه با مقدار زمینه خاک‌های جهان بالاتر است که نشان از منشأ انسانی این فلزات دارد. شاخص زمین‌انباشتگی، فاکتور غنی‌شدگی و شاخص آلودگی محاسبه شده برای همه عناصر مورد مطالعه به صورت Ni> Zn> Cu> Cr> Mn> Fe می‌باشد. میزان شاخص زمین‌انباشتگی، فاکتور غنی‌شدگی و شاخص آلودگی در گرد و غبار برای نیکل، روی و مس (به‌ویژه نیکل) و به میزان کمتری کروم، نشان از آلودگی این فلزات دارد که احتمالاً از ترافیک و فعالیت‌های صنعتی سرچشمه گرفته‌اند. هم‌چنین میزان پایین این شاخص‌های ارزیابی آلودگی برای منگنز و آهن، نشان از عدم آلودگی گرد و غبار به این عناصر دارد. نتایج ارزیابی شاخص جامع آلودگی، آلودگی شدید گرد و غبار توسط فلزات سنگین را نشان می‌دهد. با توجه به نتایج این مطالعه، شناسایی و کنترل منابع آلاینده‌هایی چون فلزات سنگین در گرد و غبار به منظور پیشگیری از آلودگی ناشی از آن‌ها نیازمند توجه بیشتر می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Assessment of Kermanshah Province Atmospheric Dust Contamination with Selected Heavy Metals Using Pollution Indexes During the Summer 2013

نویسندگان [English]

  • shahab ahmadi doabi 1
  • Majid Afyuni 1
  • Mahin Karami 2

1 Isfahan University of Technology

2 Razi University, Kermanshah

چکیده [English]

Introduction: Atmospheric dust is an important source of heavy metals, particularly in urban environments. Heavy metals can easily attach to dust particles and be distributed in large areas. Therefore, assessing the extent of heavy metals pollution present in nuisance dust is important for establishing pollution control strategies and evaluating the results of previous measurements. Heavy metals contamination in atmospheric dust of Kermanshah provine has not been previously investigated. The main objective of this initial study was to determine the concentrations of heavy metals in atmospheric dust samples that were collected from Kermanshah province and to assess their contamination level. The results can provide a baseline for use in future environmental impact assessments and to guide pollution mitigation targets.
Materials and Methods: Dust samples were collected from 49 sites across the province, during the summer 2013. Dust sampling sites were selected in different urban (35 site) and suburban (14 site) locations in Kermanshah, Songhor, Gilangharb, Ghasre-Shirin, Sahneh, Sarpolzahab, Kangavar, Paveh and Javanrood cities. Dust collectors were installed on the roof of buildings about 3–4 m above the ground level. Each collection tray consisted of a circular plastic surface (320 mm in diameter, 120 mm depth) that was fixed on holders with 33 cm height and covered with a 2 mm PVC mesh on top to form a rough area for trapping saltant particles. The dust samples were analyzed for their Zn, Cu, Ni, Cr, Mn and Fe concentrations using an Atomic Absorption Spectrophotometer. In the present study, geo-accumulation index (Igeo), enrichment factor (EF), pollution index (PI) and integrated pollution index (IPI) were calculated to assess the heavy metal contamination level in the atmospheric dust.
Results and Discussion: The results showed that except for Fe and Mn, all heavy metal concentrations of atmospheric dust in Kermanshah provine were higher than in the background soils of world, showing that these heavy metals are likely from anthropogenic sources. The order of mean Igeo values was Ni> Zn> Cu> Cr> Mn> Fe, similar to the order of their EFs and PIs, which can also be seen as the decreasing order of their overall contamination degrees in atmospheric dust of Kermanshah province. The mean Igeo for Ni points to moderately to strongly pollution. 59% of calculated Igeo for Ni falls into class 2 (moderately polluted) and 37% into class 3 (moderately to strongly polluted), while according to the Igeo values for Mn (98%) and Fe (100%), they were practically unpolluted (class 0). The maximum EFs of Zn, Cu and Ni were higher than 10, which show that Zn, Cu and Ni in atmospheric dusts mainly originate from anthropogenic sources. It seems that EFs can also be an effective tool to differentiate the natural origins from anthropogenic sources. The mean EF (11.2) and 94% of Ni EFs were in the range of 5–20 indicating that Ni was a main contaminant in studied samples. Mn had 41% EFs less than 2 and 59% EFs in the range of 2–5, with mean EF less than 2, indicating minimal enrichment. The analytical results of heavy metals Igeo are same as the analytical results of EFs. The PIs of Zn, Cu and Ni were in the ranges of 2.1 to 11.3, 1.7 to 18.3 and 3.3 to 13.6, with an average of 3.8, 3.3 and 6.9, respectively. These data indicate that Zn, Cu and Ni may cause serious pollution in atmospheric dust of Kermanshah. The IPIs of atmospheric dust samples vary from 1.9 to 6.2 with mean value of 2.9, indicating that all studied samples were polluted by heavy metals.
Conclusion: The concentrations of heavy metals that were investigated in this study were compared with the reported data of other cities and with the background values of elements in the world soils. The concentrations of Zn, Cu, Ni and Cr in urban dust samples, and Fe and Mn in suburban dust samples were higher than their respective values in the world soils. The results indicate that atmospheric dusts in Kermanshah provin have elevated metal concentrations in general. The calculated values of Igeo and EF of heavy metals revealed the order of Igeo and EF as Ni> Zn> Cu> Cr> Mn> Fe. The high Igeo and EF for Ni, Zn and Cu in atmospheric dusts indicated that there was a considerable Ni, Zn and Cu pollution (Especially nickel), which possibly originate from traffic and industrial activities. The Igeo and EF of Mn and Fe were low. The results of PI also supported Zn, Cu and Ni serious pollution in atmospheric dust. Similarly, IPI results confirmed atmospheric dust samples pollution by heavy metals. These findings indicated that more attention should be paid to heavy metal contamination of atmospheric dusts in Kermanshah, especially in case of Ni.

کلیدواژه‌ها [English]

  • Atmospheric dust
  • Contamination assessment
  • Heavy metals
  • Kermanshah
1- Ahmadi Doabi. S., Karami M. and Afyuni M. 2016. Regional-scale fluxes of zinc, copper and nickel into and out of the agricultural soils of the Kermanshah province in western Iran. Environmental Monitoring and Assessment. (in press)
2- Ahmed F., and Ishiga H. 2006. Trace metal concentrations in street dusts of Dhaka city, Bangladesh. Atmospheric Environment, 40(21):3835-3844.
3- Al Bakain R.Z., Jaradat Q.M. and Momani K.A.2012. Indoor and outdoor heavy metals evaluation in kindergartens in amman, Jordan. Jordan Journal of Physics, 5(1):43-52.
4- Al-Khashman O.A. 2004. Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan. Atmospheric environment, 38(39):6803-6812.
5- Alloway B. 2010. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability, third ed. Springer Publications, p. 614.
6- Anagnostou C., Kaberi H. and Karageorgis A. 1997. Environmental impact on the surface sediments of the bay and the gulf of Thessaloniki (Greece) according to the geoaccumulation index classification.In International conference on water pollution, pp. 269-275.
7- Azimzadeh B., and Khademi H. 2013. Estimation of Background Concentration of Selected Heavy Metals for Pollution Assessment of Surface Soils of Mazandaran Province, Iran.Journal of Water and Soil. 27(3):548-559. (in Persian with English abstract).
8- Barzin M., Kheirabadi H. and Afyuni M. 2015. An investigation into pollution of selected heavy metals of surface soils in Hamadan province using pollution index. JWSS - Isfahan University of Technology. 19(72):69-79. (in Persian with English abstract)
9- Chen T.B., Zheng Y.M., Lei M., Huang Z.C., Wu H.T., Chen H. and Tian Q.Z. 2005. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4):542-551.
10- De Miguel E., Llamas J.F., Chacon E., Berg T., Larssen S., Røyset O. and Vadset M. 1997. Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmospheric Environment, 3(17):2733-2740.
11- Faiz Y., Tufail M., Javed M.T. and Chaudhry M.M. 2009. Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan. Microchemical Journal, 92(2):186-192.
12- Ghadimi F., Ghomi M., Ranjbar M. and Hajati A. 2013. Statistical Analysis of Heavy Metal Contamination in Urban Dusts of Arak, Iran. Iranica Journal of Energy and Environment, 4(4):406-418.
13- Gonzalez-Macias C., Schifter I., Lluch-Cota D.B., Mendez-Rodriguez L. and Hernandez-Vazquez S. 2006. Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environmental Monitoring and Assessment, 118(1-3):211-230.
14- Hu X., Zhang Y., Luo J., Wang T., Lian H. and Ding Z. 2011. Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159(5):1215-1221.
15- Islamic Republic of Iran Meteorological Organization (IRIMO). 2013. Available at http://www.irimo.ir. (in Persian and English)
16- Jafari F. 2013. Deposition rate and selected physical, chemical and clay mineralogical characteristics of atmospheric dust in Kerman city.M.Sc. thesis soil science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran. (in Persian with English abstract)
17- Jiries A. 2003. Vehicular contamination of dust in Amman, Jordan. Environmentalist, 23(3):205-210.
18- Karimi N., Ghaderian S.M., Maroofi H. and Schat H. 2009. Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran, Iran. International journal of phytoremediation, 12(2):159-173.
19- Kartal Ş., Aydın Z. and Tokalıoğlu Ş. 2006. Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data. Journal of Hazardous Materials, 132(1):80-89.
20- Keshavarzi B., Tazarvi Z., Rajabzadeh M.A. and Najmeddin A. 2015. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmospheric Environment, 119:1-10.
21- Khuzestani R.B., and Souri B. 2013. Evaluation of heavy metal contamination hazards in nuisance dust particles, in Kurdistan Province, western Iran. Journal of Environmental Sciences, 25(7):1346-1354.
22- Liu Q.T., Diamond M.L., Gingrich S.E., Ondov J.M., Maciejczyk P. and Stern G.A. 2003. Accumulation of metals, trace elements and semi-volatile organic compounds on exterior window surfaces in Baltimore. Environmental Pollution, 122(1):51-61.
23- Lu X., Wang L., Lei K., Huang J. and Zhai Y. 2009. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. Journal of hazardous materials, 161(2):1058-1062.
24- Mahmoodi Z., and Khademi H. 2014.Concentration of selected heavy metals in atmospheric dust of Isfahan and neighboring metropolitan areas. JWSS - Isfahan University of Technology.18(67):243-255. (in Persian with English abstract)
25- Müller G. 1969. Index of geo-accumulation in sediments of the Rhine River. Geojournal, 2:108–118.
26- Nicholson F.A., Smith S.R., Alloway B.J., Carlton-Smith C. and Chambers B.J. 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the total environment, 311(1):205-219.
27- Nriagu J.O. 1988. A silent epidemic of environmental metal poisoning? Environmental pollution, 50(1):139-161.
28- Rashki A., Eriksson P.G., Rautenbach C.D.W., Kaskaoutis D.G., Grote W. and Dykstra J. 2013. Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran. Chemosphere, 90(2):227-236.
29- Rasmussen P.E., Subramanian K.S. and Jessiman B.J. 2001. A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 267(1):125-140.
30- Reimann C., and De Caritat P. 2005. Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337(1):91-107.
31- Romić M., Hengl T., Romić D. and Husnjak S. 2007. Representing soil pollution by heavy metals using continuous limitation scores. Computers and Geosciences, 33(10):1316-1326.
32- Saeedi M., Li L.Y. and Salmanzadeh M. 2012. Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. Journal of hazardous materials, 227:9-17.
33- Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A. and Sumner M.E. 1996. Methods of soil analysis.Part 3-Chemical methods.Soil Science Society of America Inc.
34- Standard A.S.T.M. D1739-70. 1970. Standard Test Method for Collection and Measurement of Dustfall (Settleable Particulate Matter). ASTM International: West Conshohocken, PA.
35- Statistical Center of Iran (SCI), 2011.http://www.amar.org.ir. (in Persian and English)
36- Ta W., Xiao H., Qu J., Xiao Z., Yang G., Wang T. and Zhang X. 2004. Measurements of dust deposition in Gansu Province, China, 1986–2000. Geomorphology, 57(1):41-51.
37- Tong S.T., and Lam K.C. 2000. Home sweet home?A case study of household dust contamination in Hong Kong. Science of the Total Environment, 256(2):115-123.
38- Varrica D., Dongarra G., Sabatino G. and Monna F. 2003.Inorganic geochemistry of roadway dust from the metropolitan area of Palermo, Italy. Environmental Geology, 44(2):222-230.
39- Wei B., Jiang F., Li X. and Mu S. 2009. Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China. Microchemical Journal, 93(2):147-152.
40- Wei B., Jiang F., Li X. and Mu S. 2010. Heavy metal induced ecological risk in the city of Urumqi, NW China. Environmental monitoring and assessment, 160(1-4):33-45.
41- Yaroshevsky A.A. 2006. Abundances of chemical elements in the Earth’s crust. Geochemistry International, 44(1):48-55.
42- Yongming H., Peixuan D., Junji C. and Posmentier E.S. 2006. Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China. Science of the Total Environment, 355(1):176-186.
43- Zarasvandi A., Carranza E.J.M., Moore F. and Rastmanesh F. 2011. Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). Journal of geochemical exploration, 111(3):138-151.
CAPTCHA Image