دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران.

2 موسسه تحقیقات آب، وزارت نیرو، تهران، ایران.

چکیده

هدف از تحقیق حاضر توسعه و معرفی یک شاخص جدید کیفیت آب شرب (SDWQI)، با استفاده از پارامترهای کیفی اندازه‌گیری شده در ایستگاه‌های هیدرومتری رودخانه سفیدرود است. به این منظور 12 پارامتر کیفی ماهانه‌ شامل کل مواد جامد محلول (TDS)، هدایت الکتریکی (EC)، سختی کل (TH)، اسیدیته (pH)، کلر (Cl-)، سولفات (SO4-2)، کربنات (CO3-2)، بی‌کربنات (HCO3-)، منیزیم (Mg2+)، سدیم (Na+)، کلسیم (Ca2+) و پتاسیم (K+) طی دوره آماری 1366-99 در ایستگاه‌های هیدرومتری رودبار و آستانه واقع در رودخانه سفیدرود استفاده شده است. پس از پردازش‌های اولیه روی داده‌ها مانند تحلیل همبستگی پارامترها، از روش‌های چندمتغیره آماری مانند خوشه‌بندی و تجزیه به مؤلفه‌های اصلی (PCA) به منظور انتخاب و وزن‌دهی پارامترهای کیفیت آب با استفاده از بسته‌های “cluster” و “factoextra” در نرم‌افزار R 4.1.1 برای توسعه شاخص جدید کیفیت آب استفاده شده است. نتایج شاخص جدید توسعه داده شده با شاخص کیفیت آب شرب سازمان بهداشت جهانی (WHO) و دسته‌بندی کیفیت آب شرب شولر مقایسه شده است. وزن‌دهی پارامترها با استفاده از روش PCA حاکی از اختصاص بیشترین و کمترین وزن به ترتیب به پارامترهای TDS و K+ و برابر 163/0 و 031/0 می‌باشد. همچنین نتایج حاکی از پوشش 3/59 و 6/67 درصدی مولفه‌های اصلی اول و دوم از واریانس تغییرات کل پارامترهای کیفیت آب مورد بررسی به ترتیب در ایستگاه‌های رودبار و آستانه می‌باشد. نتایج دسته‌بندی کیفیت آب بیانگر قرار گرفتن به ترتیب (5/40، 4/16 و 7/23 درصد) و (1/90، 1/73 و 3/57 درصد) داده‌های ایستگاه‌های رودبار و آستانه در رده‌ی خوب و عالی جهت مصارف شرب بر اساس دسته‌بندی شولر، شاخص WHO و شاخص جدید می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Introducing a New Drinking Water Quality Index for Surface Water Resources Using Multivariate Analysis (Case Study: Sefidroud River)

نویسندگان [English]

  • M. Mohammadi Ghaleni 1
  • H. Kardan Moghaddam 2

1 Water Science and Engineering Department, Faculty of Agriculture and Environment, Arak University, Arak, Iran.

2 Water Research Institute, Ministry of Energy, Tehran, Iran.

چکیده [English]

Introduction
The water quantity and quality has always been one of the main challenges in the issue of allocating water resources for different uses. Water quality management requires the collection and analysis of large amounts of water quality parameters that will be evaluated and concluded. Many tools have been found to simplify the evaluation of water quality data, and the water quality index (WQI) is one of these widely used tools. In summary, the WQI can be defined as a number obtained from the combination of several quality parameters based on standards for its extraction. The aim of this study was to develop and introduce the new Surface water Drinking Water Quality Index (SDWQI) adopt the water quality parameters measured on hydrometric stations of Iran. In developing this index, criteria such as the availability of required parameters in most rivers and simple and accurate methods have been considered. Also, the ability to calculate with the minimum general parameters of water quality, simple calculations and in terms of the international standard WHO for drinking is one of the advantages of the introduced index.
Materials and Methods
For this purpose, 12 water quality parameters including Total Dissolved Solids (TDS), Electrical Conductivity (EC), Total Hardness (TH), pH, Chloride (Cl-), Sulfate (SO42-), Carbonate (CO32-), Bicarbonate (HCO3-), Magnesium (Mg2+), Sodium (Na+), Calcium (Ca2+) and Potassium (K+) have been used from Rudbar and Astaneh hydrometric stations located on Sefidroud river. Then initial preprocessing on data e.g. correlation analysis, and multivariate statistical methods including cluster analysis (CA) and principal components analysis (PCA) are used to selecting and weighting of water quality parameters using the “clustering” and “factoextra” packages in R 4.1.1. In order to develop the SDWQI were performed four steps including, parameter selection, sub-indexing, weighting and aggregation of the index. Also, in order to evaluate the index of the present research, the results of the SDWQI have been compared with the WHO drinking water quality index and Schoeller drinking water quality classification.
Results and Discussion
Correlation analysis between water quality parameters shows a significant correlation between TDS, EC and TH parameters and also with Cl-, Ca2+ and Mg2+ parameters at the level of 1% in both Astaneh and Rudbar stations. On the other hand, the lowest values of Pearson correlation coefficient are related to pH and CO32- parameters with other quality parameters. The results of CA indicate that most of the water quality parameters are located in separate clusters. So only the parameters TDS, EC, Cl- and Na+ in both Rudbar and Astaneh stations are in the same cluster. The weights of the parameters showed that TDS and K+ are assigned with the highest and lowest weights equal to 0.163 and 0.031 based on PCA method. Also, PCA results show that first and second principal components covered 59.3% and 67.6% of the total variance of measured water quality parameters in Rudbar and Astaneh stations, respectively. Water quality classification results indicate that (40.5%, 16.4% and 23.7%) and (90.1%, 73.1% and 57.3%) of data in Rudbar and Astaneh stations, respectively, fell into the excellent and good categories for drinking purposes based on Schoeller classification, WHOWQI and SDWQI.
Conclusion
Generally, the comparison of the SDWQI with the WHO index and the Schoeller classification shows the rigidity of the new index in the classification of water quality for drinking purposes. Each water quality index developed in order to evaluate the uncertainty of results, should be tested for data with different characteristics in terms of the range of variation with different limit values​​ (minimum and maximum). The index developed in the present study is no exception to this rule and in order to better evaluate the results, it is suggested that to be evaluated and analyzed with data from other hydrometric stations. Another important points that should be considered in using any water quality index, including the present research index, is to examine the allowable limits of water quality parameters that are not considered in these indicators. The results of the study indicated that, two most important steps in the development of a quality index that have a great impact on its results are sub-indexing and weighting of parameters. According to the results, two ideas recommended for future research. One, choosing an appropriate method such as non-deterministic (fuzzy) and intelligent (machine learning) methods to sub-index the parameters and two, to weigh the parameters more effectively, multivariate statistical methods such as clustering, factor analysis and principal component analysis should be used.

کلیدواژه‌ها [English]

  • Clustering
  • Hydrometric stations
  • Principal component analysis
  • Sefidroud river
  • Water quality index
  1. Abbasi, T., & Abbasi, S.A. (2012). Water quality indices. Elsevier.
  2. Adimalla, N., & Venkatayogi, S. (2018). Geochemical characterization and evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Basara, Telangana State, South India. Applied Water Science 8(1): 1-14. https://doi.org/10.1007/s13201-018-0682-1.
  3. Babanezhad, E., Qaderi, F., & Ziri, M.S. (2018). Spatial modeling of groundwater quality based on using Schoeller diagram in GIS base: a case study of Khorramabad, Iran. Environmental Earth Sciences 77(9): 1-12. https://doi.org/10.1007/s12665-018-7541-0.
  4. Brown, R.M., McClelland, N.I., Deininger, R.A., & Tozer, R.G. (1970). A water quality index-do we dare. Water and Sewage Works 117(10).
  5. Casillas-García, L.F., de Anda, J., Yebra-Montes, C., Shear, H., Díaz-Vázquez, D., & Gradilla-Hernández, M.S. (2021). Development of a specific water quality index for the protection of aquatic life of a highly polluted urban river. Ecological Indicators 129: 107899. https://doi.org/10.1016/j.ecolind.2021.107899.
  6. Cotruvo, J.A. (2017). WHO guidelines for drinking water quality: first addendum to the fourth edition. JournalAmerican Water Works Association 109(7): 44-51. https://doi.org/10.5942/jawwa.2017.109.0087.
  7. Dadolahi‐Sohrab, A., Arjomand, F., & Fadaei‐Nasab, M. (2012). Water quality index as a simple indicator of watersheds pollution in southwestern part of Iran. Water and Environment Journal 26(4): 445-454. https://doi.org/10.1111/j.1747-6593.2011.00303.x.
  8. Dao, V., Urban, W., & Hazra, S.B. (2020). Introducing the modification of Canadian water quality index. Groundwater for Sustainable Development 11: 100457. https://doi.org/10.1016/j.gsd.2020.100457.
  9. Darapu, S.S.K., Sudhakar, B., Krishna K.S.R., Rao, P.V., & Sekhar, M.C. (2011). Determining water quality index for the evaluation of water quality of river Godavari. International Journal of Environmental Research and Application 1: 174-18.
  10. Dunnette, D.A. (1979). A geographically variable water quality index used in Oregon. Journal of Water Pollution Control Federation 53-61.
  11. Grubbs, F.E. (1950). Sample criteria for testing outlying observations. The Annals of Mathematical Statistics 27-58.
  12. Horton, R.K. (1965). An index number system for rating water quality. Journal of the Water Pollution Control Federation 37(3): 300-306.
  13. Hoseinzadeh, E., Khorsandi, H., Wei, C., & Alipour, M. (2015). Evaluation of Aydughmush river water quality using the national sanitation foundation water quality index (NSFWQI), river pollution index (RPI), and forestry water quality index (FWQI). Desalination and Water Treatment 54(11): 2994-3002. https://doi.org/10.1080/19443994.2014.913206.
  14. Jesuraja, K., Selvam, S., & Murugan, R. (2021). GIS-based assessment of groundwater quality index (DWQI and AWQI) in Tiruchendur Coastal City, Southern Tamil Nadu, India. Environmental Earth Sciences 80(7): 1-17. https://doi.org/10.1007/s12665-021-09542-5.
  15. Kannel, P.R., Lee, S., Lee, Y.S., Kanel, S.R., & Khan, S.P. (2007). Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environmental monitoring and assessment 132(1): 93-110. https://doi.org/10.1007/s10661-006-9505-1.
  16. Kumar, S., & Sangeetha, B. (2020). Assessment of ground water quality in Madurai city by using geospatial techniques. Groundwater for Sustainable Development 10: 100297. https://doi.org/10.1016/j.gsd.2019.100297.
  17. Liou, S.M., Lo, S.L., & Wang, S.H. (2004). A generalized water quality index for Taiwan. Environmental Monitoring and Assessment 96(1): 35-52. https://doi.org/10.1023/B:EMAS.0000031715.83752.a1.
  18. Lobato, T.C., Hauser-Davis, R.A., Oliveira, T.F., Silveira, A.M., Silva, H.A.N., Tavares, M.R.M., & Saraiva, A.C.F. (2015). Construction of a novel water quality index and quality indicator for reservoir water quality evaluation: A case study in the Amazon region. Journal of Hydrology 522: 674-683. https://doi.org/10.1016/j.jhydrol.2015.01.021.
  19. Ma, Z., Li, H., Ye, Z., Wen, J., Hu, Y., & Liu, Y. (2020). Application of modified water quality index (WQI) in the assessment of coastal water quality in main aquaculture areas of Dalian, China. Marine Pollution Bulletin 157: 111285. https://doi.org/10.1016/j.marpolbul.2020.111285.
  20. Medeiros, A.C., Faial, K.R.F., Faial, K.D.C.F., da Silva Lopes, I.D., de Oliveira Lima, M., Guimarães, R.M., & Mendonça, N.M. (2017). Quality index of the surface water of Amazonian rivers in industrial areas in Pará, Brazil. Marine Pollution Bulletin 123(1-2): 156-164. https://doi.org/10.1016/j.marpolbul.2017.09.002.
  21. Misaghi, F., Delgosha, F., Razzaghmanesh, M., & Myers, B. (2017). Introducing a water quality index for assessing water for irrigation purposes: A case study of the Ghezel Ozan River. Science of the Total Environment 589: 107-116. https://doi.org/10.1016/j.scitotenv.2017.02.226.
  22. Naubi, I., Zardari, N.H., Shirazi, S.M., Ibrahim, N.F.B., & Baloo, L. (2016). Effectiveness of Water Quality Index for Monitoring Malaysian River Water Quality. Polish Journal of Environmental Studies 25(1): 231–239. https://doi.org/10.15244/pjoes/60109.
  23. Neary, B., Cash, K., Hebert, S., Khan, H., Saffran, K., Swain, L., & Williamson, D. (2001). Canadian Water quality guidelines for the protection of the aquatic life, CCME water quality index 1.0. Technical Report Canadian Council of Ministers of the Environment.
  24. Rai, R.K., Upadhyay, A., Ojha, C.S.P., & Singh, V.P. (2011). The Yamuna river basin: water resources and environment (Vol. 66). Springer Science and Business Media.
  25. Sarkar, C., & Abbasi, S.A. (2006). Qualidex – A New Software for Generating Water Quality Indice. Environmental Monitoring and Assessment 119: 201–231. https://doi.org/10.1007/s10661-005-9023-6.
  26. Schoeller, H. (1965). Qualitative evaluation of groundwater resources. Methods and techniques of groundwater investigations and development, UNESCO 5483.
  27. Schoeller, H. (1967). Geochemistry of groundwater—an international guide for research and practice, Chap. 15: 1–18.
  28. Stoner, J.D. (1978). Water-quality indices for specific water uses. Department of the Interior Geological Survey.
  29. Sutadian, A.D., Muttil, N., Yilmaz, A.G., & Perera, B.J.C. (2016). Development of river water quality indices—a review. Environmental Monitoring and Assessment 188(1): 1-29. https://doi.org/10.1007/s10661-015-5050-0.
  30. Sutadian, A.D., Muttil, N., Yilmaz, A.G., & Perera, B.J.C. (2017). Using the Analytic Hierarchy Process to identify parameter weights for developing a water quality index. Ecological Indicators 75: 220-233. https://doi.org/10.1016/j.ecolind.2016.12.043.
  31. Tiwari, A.K., Singh, A.K., & Mahato, M.K. (2018). Assessment of groundwater quality of Pratapgarh district in India for suitability of drinking purpose using water quality index (WQI) and GIS technique. Sustainable Water Resources Management 4(3): 601-616. https://doi.org/10.1007/s40899-017-0144-1.
  32. Uddin, M.G., Nash, S., & Olbert, A.I. (2021). A review of water quality index models and their use for assessing surface water quality. Ecological Indicators122: 107218. https://doi.org/10.1016/j.ecolind.2020.107218.
  33. Varol, S., & Davraz, A. (2015). Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: a case study of the Tefenni plain (Burdur/Turkey). Environmental Earth Sciences 73(4): 1725-1744. https://doi.org/10.1007/s12665-014-3531-z.
  34. Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv Ganthi, R., Chidambaram, S., Anandhan, P., & Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental Monitoring and Assessment 171(1): 595-609. https://doi.org/10.1007/s10661-009-1302-1.
  35. Verma, P., Singh, P.K., Sinha, R.R., & Tiwari, A.K. (2020). Assessment of groundwater quality status by using water quality index (WQI) and geographic information system (GIS) approaches: a case study of the Bokaro district, India. Applied Water Science 10(1): 1-16. https://doi.org/10.1007/s13201-019-1088-4.
  36. Yadav, K.K., Gupta, N., Kumar, V., Sharma, S., & Arya, S. (2015). Water quality assessment of Pahuj River using water quality index at Unnao Balaji, MP, India. International Journal of Sciences: Basic and Applied Research 19(1): 241-250.

 

CAPTCHA Image