دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

گردوخاک یکی از شاخص­های مهم تغییر اقلیم است. با این حال، پیوند بین گرد و خاک و اقلیم به‌دلیل بازخوردهای مستقیم و غیرمستقیم در سامانه زمین بسیار پیچیده است. این مطالعه پراکنش فضایی و روند گردوخاک­های غرب آسیا و ارتباط آن­ها را با متغیرهای اقلیمی دما، بارش و تندی باد مورد بررسی قرار داده است. بدین‌منظور برای بررسی پراکنش فضایی روند غلظت گردوخاک از برونداد متغیر غلظت گردوخاک مجموعه داده MERRA-2 و برای بررسی متغیرهای اقلیمی، مجموعه دادهAgERA5  استفاده شد. تغییرات فصلی غلظت گرد و خاک به خوبی چشمه­های فعال گرد و خاک در منطقه مورد مطالعه را مشخص کرد. بررسی کارایی متغیرهای اقلیمی دما، بارش و تندی باد نشان داده است مجموعه دادهAgERA5  دما را با کارایی بالاتری نسبت به بارش و تندی باد در ایستگاه­های نماینده پهنه­های اقلیمی در غرب آسیا برآورد می­کند. از بین سه متغیر مورد بررسی، تندی باد کارایی به نسبت کمتری را نسبت به دما و بارش نشان داده است. به­طور کلی مجموعه دادهAgERA5  دارای کارای قابل قبولی در برآورد متغیرهای اقلیمی است و در مناطق فاقد داده از این مجموعه داده می­توان به‌عنوان یک داده جایگزین استفاده کرد. نتایج نشان داد که متغیرهای اقلیمی نقش کلیدی را در تغییرپذیری غلظت گردوخاک در منطقه مورد مطالعه دارند، بطوریکه مناطق منطبق بر باد شمال تابستانه و باد 120 روزه سیستان بالاترین غلظت گردوخاک سالانه را دارند. بالاترین ضریب همبستگی بین غلظت گردوخاک با دما در ماه­های گرم سال به بیش از 8/0 و با تندی باد در ماه­های ژانویه تا می و نوامبر تا دسامبر بیشتر از 6/0 و همبستگی آن با بارش در ماه­های سرد سال 7/0– محاسبه شده است. غلظت گردوخاک روند افزایشی را در مناطق بیابانی ربع‌الخالی، النفود، الدهنا، بین‌النهرین، بیابان­های عراق و سوریه داشته به­طوری‌که از ماه­های مارس تا اوت (بهار و تابستان) روند افزایشی غلظت گردوخاک در سطح 05/0 معنی­دار است. بالاترین شدت روند افزایشی در فصول بهار و تابستان در مناطق بین‌النهرین، بیابان­های عراق، سوریه و یمن، دشت سیستان و بیابان تار در پاکستان و جنوب شرق ایران مشاهده شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the Spatial Distribution and Trend of Dust Mass Density in West Asia and Its Relationship with Climate Variables

نویسندگان [English]

  • Sh. Katorani 1
  • M. Ahmadi 1
  • A. Dadashi-Roudbari 2

1 Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran, respectively.

2 Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran

چکیده [English]

Introduction
Dust emission is considered as one of the environmental hazards in arid and semi-arid regions. Understanding the effective variables in increasing dust mass density is very important for early warning and reducing its imposing damages. One of the main and effective variables in the occurrence of dust is the geographical and climate characteristics of the origin areas and areas affected by this phenomenon. Feeding the great rivers of Mesopotamia, it has reduced soil moisture. Also, the wind component is one of the reasons for the increase in dust in these areas. This study examines the relative importance of climatic variables to investigate seasonal and monthly changes in dust emission in West Asia and parts of South and Central Asia.
 
Materials and Methods
This study has examined West Asian dust from three perspectives spatial distribution, trends, and their relationship with climate variables. For this purpose, the Dust Column Mass Density (DUCMASS) variable output of the MERRA-2 dataset was used to investigate the spatial distribution of the dust mass density trend, and the AgERA5 dataset was used to investigate the seasonal and monthly changes of precipitation, wind speed, and temperature variables from 1981 to 2020. In this study, the modified Mann-Kendall (MMK) trend test method was used to investigate the trend of dust occurrence in the study area, and the Sen's slope estimator (SSE) test was used to investigate the slope of the trend and to better display the changes in dust mass density in the western region. the results of the SSE test have been examined on a decade scale.
 
Results and Discussion
Investigating the possible climate drivers in the changes of dust mass density for different regions by calculating the correlation between the time series of dust mass density and the variables of temperature, precipitation, and wind speed has been investigated. The results showed that there is an inverse correlation between dust mass density and precipitation and a direct relationship between dust mass density and temperature and wind speed. The highest correlations between dust mass density and temperature have been calculated, and this value has reached 0.9 in the warm months of the year. On the other hand, the highest negative correlations have been calculated in the cold period of the year (winter and autumn seasons) between dust concentration and precipitation with a value of -0.7. The correlation coefficient between dust mass density and wind speed in the months of January to May and November to December was mostly above 0.6. This value shows a lower correlation in the summer season.
In most months of the year, dust mass density shows an increasing trend in most regions, from March to July, an increasing trend in active dust springs in Mesopotamia, the deserts of Iraq and Syria, the desert of Rub' Al Khali, Ad-Dahna and Al Nufud Al Kabir were observed in Arabia and Thar desert in Pakistan. This increasing trend started cyclically from the beginning of spring and reaches its peak in June and July, and the intensity of the trend decreases from September and reaches its minimum value in December. The important point is that the cycle of changes in the monthly trend of dust mass density coincides with the cycle of changes in dust mass density. The northern parts of Iran and Turkey have the highest frequency among different months of the year with a decreasing trend of dust mass density. The increasing trend of dust mass density in the spring and summer seasons in Mesopotamia, the deserts of Iraq, Syria, and Yemen, the Sistan Plain, and the Thar desert in Pakistan and the southeast of Iran was significant at the level of 0.05.
 
Conclusion
The results revealed that the seasonal changes in dust mass density show well the active sources of dust in the studied area. In the spring and summer seasons, the activity of the dust centers located in the west of the study area, including the Rub' al Khali, Ad-Dahna and Al Nufud Al Kabir deserts, Mesopotamia, the deserts of Iraq and Syria, increases and on the arrival of dust to the west and southwest Iran affects. The investigation showed that climate variables play a key role in the variability of dust mass density in the study area so the areas corresponding to the summer north wind and the 120-day wind of Sistan have shown the highest dust mass density in annual variability. The correlation coefficient between dust mass density with temperature and direct wind speed and its correlation with negative precipitation have been obtained. The results showed that dust mass density has an increasing trend in most of the regions, so from March to August (spring and summer), the increasing trend of dust mass density is significant at the level of 0.05. The highest intensity of the increasing trend was observed in the spring and summer seasons in Mesopotamia, the deserts of Iraq, Syria, and Yemen, the Sistan Plain, and the Thar desert in Pakistan and southeast Iran.

کلیدواژه‌ها [English]

  • Dust mass density
  • Dust trend
  • MERRA-2 dataset
  • . West Asia

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Alam, K., Iqbal, M.J., Blaschke, T., Qureshi, S., & Khan, G. (2010). Monitoring spatio-temporal variations in aerosols and aerosol–cloud interactions over Pakistan using MODIS data. Advances in Space Research46(9), 1162-1176. https://doi.org/10.1016/j.asr.2010.06.025
  2. Alonso-Montesinos, J., Martínez, F.R., Polo, J., Martín-Chivelet, N., & Batlles, F.J. (2020). Economic effect of dust particles on photovoltaic plant production. Energies13(23), 6376. https://doi.org/10.3390/en13236376
  3. Asadi Rahim-Begi, N., Zarrin, A., Modfidi, A., & Dadashi-Roudbari, A. (2022). Seasonal distribution analysis of extreme precipitation in Iran using AgERA5 dataset. Iranian Journal of Soil and Water Research52(11), 2723-2737. (In Persian). https://doi.org/10.22059/ijswr.2021.333263.669118
  4. Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., & Thépaut, J.N. (2021). The ERA5 global reanalysis: Preliminary extension to 1950. Quarterly Journal of the Royal Meteorological Society147(741), 4186-4227. https://doi.org/10.1002/qj.4174
  5. Moradi, H., Zangane, A.M., & Pourhashemi, S. (2019). Evaluation of the role of drought in frequency of dust in Khorasan Razavi province. (In Persian). https://doi.org/10.22034/jest.2019.10464
  6. Brown, D., de Sousa, K., & van Etten, J. (2023). ag5Tools: An R package for downloading and extracting agrometeorological data from the AgERA5 database. SoftwareX, 21, 101267. https://doi.org/10.1016/j.softx.2022.101267
  7. Caido, N.G., Ong, P.M., Rempillo, O., Galvez, M.C., & Vallar, E. (2022). Spatiotemporal analysis of MODIS aerosol optical depth data in the Philippines from 2010 to 2020. Atmosphere, 13(6), 939. https://doi.org/10.3390/ atmos13060939
  8. Chen, S., Liu, J., Wang, X., Zhao, S., Chen, J., Qiang, M., & Chen, F. (2021). Holocene dust storm variations over northern China: transition from a natural forcing to an anthropogenic forcing. Science Bulletin, 66(24), 2516-2527. https://doi.org/10.1016/j.scib.2021.08.008
  9. Dadashi-Roudbari, A. (2020). Analysis of spatiotemporal variations of vertical and horizontal patterns of aerosols and evaluation of its Climate feedback in Iran, Ph.D. Thesis Urban Climatology, Shahid Beheshti University, Tehran, Iran. (In Persian)
  10. Dadashi-Roudbari, A., Ahmadi, M., & Shakiba, A. (2020). Seasonal Study of dust deposition and fine particles (PM 2.5) in Iran Using MERRA-2 data. Iranian Journal of Geophysics (IJG), 13(4), 43-59.‎
  11. Dadashi-Roudbari, A., & Ahmadi, M. (2021). An assessment of change point and trend of diurnal variation of dust storms in Iran: a multi-instrumental approach from in situ, multi-satellite, and reanalysis dust product. Meteorology and Atmospheric Physics, 133, 1523-1544. https://doi.org/10.1007/s00703-021-00825-x
  12. Dar, M.A., Ahmed, R., Latif, M., & Azam, M. (2022). Climatology of dust storm frequency and its association with temperature and precipitation patterns over Pakistan. Natural Hazards, 110(1), 655-677. https://doi.org/10.1002/joc.5019
  13. Daufresne, M., Lengfellner, K., & Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences, 106(31), 12788-12793. https://doi.org/10.1073/pnas.0902080106
  14. Fallah Zazuli, M., Vafaeinezhad, A., Kheirkhah Zarkesh, M.M., & Ahmadi Dehka, F. (2014). Source routing of dust haze phenomenon in the west and southwest of Iran and its synoptic analysis by using remote sensing and GIS. Journal of RS and GIS for Natural Resources5(4), 61-78. (In Persian)
  15. Goudie, A.S., & Middleton, N.J. (2006). Desert dust in the global system. Springer Science & Business Media.
  16. Hamed, K.H., & Rao, A.R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology204(1-4), 182-196. https://doi.org/10.1016/S0022-1694(97)00125-X
  17. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., & Thépaut, J.N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049. https://doi.org/10.1002/qj.3803
  18. Heydari, A., Zarrin, A., & Dadashi-Roudbari, A. (2023). Investigating the performance of the deterministic and probabilistic versions (multi-member ensemble) of the ERA5 dataset in estimating Iran's temperature. Researches in Earth Sciences, 14(4), 1-20. (In Persian)
  19. Jafari, M., Mesbahzadeh, T., Masoudi, R., Zehtabian, G., & Amouei Torkmahalleh, M. (2021). Dust storm surveying and detection using remote sensing data, wind tracing, and atmospheric thermodynamic conditions (case study: Isfahan Province, Iran). Air Quality, Atmosphere & Health, 14, 1301-1311. https://doi.org/10.1007/s11869-021-01021-x
  20. Jiao, D., Xu, N., Yang, F., & Xu, K. (2021). Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Scientific Reports, 11(1), 17956. https://doi.org/10.1038/s41598-021-97432-y
  21. Jin, Q., Wei, J., Lau, W.K., Pu, B., & Wang, C. (2021). Interactions of Asian mineral dust with Indian summer monsoon: Recent advances and challenges. Earth-Science Reviews, 215, 103562. https://doi.org/10.1016/j. earscirev.2021.103562
  22. Knoben, W.J., Freer, J.E., & Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-4331. https://doi.org/10.5194/ hess-23-4323-2019
  23. Koster, R.D., McCarty, W., Coy, L., Gelaro, R., Huang, , Merkova, D., & Wargan, K. (2016).MERRA-2 input observations: Summary and assessment.
  24. Li, Z., Lau, W.M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M.G., & Brasseur, G.P. (2016). Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 54(4), 866-929. https://doi.org/10.1002/2015RG000500
  25. Liu, C., Yin, Z., He, Y., & Wang, L. (2022). Climatology of dust aerosols over the Jianghan Plain revealed with space-borne instruments and MERRA-2 reanalysis data during2006–2021. Remote Sensing14(17), 4414. https://doi.org/10.3390/rs14174414
  26. Middleton, N. (2019). Variability and trends in dust storm frequency on decadal timescales: Climatic drivers and human impacts. Geosciences9(6), 261. https://doi.org/10.3390/geosciences9060261
  27. Middleton, N., Kashani, S.S., Attarchi, S., Rahnama, M., & Mosalman, S.T. (2021). Synoptic causes and socio-economic consequences of a severe dust storm in the Middle East. Atmosphere, 12(11), 1435. https://doi.org/10.3390/atmos12111435
  28. Mukherjee, T., Vinoj, V., Midya, S.K., & Adhikary, B. (2020). Aerosol radiative impact on surface ozone during a heavy dust and biomass burning event over South Asia. Atmospheric Environment, 223, 117201. https://doi.org/10.1016/j.atmosenv.2019.117201
  29. Rushingabigwi, G., Nsengiyumva, P., Sibomana, L., Twizere, C., & Kalisa, W. (2020). Analysis of the atmospheric dust in Africa: The breathable dust's fine particulate matter PM2.5 in correlation with carbon monoxide. Atmospheric Environment, 224, 117319. https://doi.org/10.1016/j.atmosenv.2020.117319
  30. Sarkar, S., Chauhan, A., Kumar, R., & Singh, R.P. (2019). Impact of deadly dust storms (May 2018) on air quality, meteorological, and atmospheric parameters over the northern parts of India. GeoHealth, 3(3), 67-80. https://doi.org/10.1029/2018GH000170
  31. Shao, Y., Wyrwoll, K.H., Chappell, A., Huang, J., Lin, Z., McTainsh, G.H., & Yoon, S. (2011). Dust cycle: An emerging core theme in Earth system science. Aeolian Research, 2(4), 181-204. https://doi.org/10.1016/j. aeolia.2011.02.001
  32. Shi, L., Zhang, J., Yao, F., Zhang, D., & Guo, H. (2021). Drivers to dust emissions over dust belt from 1980 to 2018 and their variation in two global warming phases. Science of The Total Environment, 767, 144860. https://doi.org/10.1016/j.scitotenv.2020.144860
  33. Soltani, M.J., Motamedvaziri, B., Noroozi, A.A., Ahmadi, H., & Mosaffaei, J. (2021). Identifying and prioritizing the factors affecting the creation of dust in Hendijan City and providing management solutions by DPSIR framework. Watershed Engineering and Management, 13(2), 269-282. https://doi.org/10.22092/ijwmse. 2021.352406.1848
  34. Sujitha, P.R., Santra, P., Bera, A.K., Verma, M.K., & Rao, S.S. (2022). Detecting dust loads in the atmosphere over Thar desert by using MODIS and INSAT-3D data. Aeolian Research, 57, 100814. https://doi.org/10.1016/j.aeolia.2022.100814
  35. Sun, J., Ding, K., Lai, Z., & Huang, H. (2022). Global and regional variations and main drivers of aerosol loadings over land during 1980–2018. Remote Sensing, 14(4), 859. https://doi.org/10.3390/rs14040859
  36. Tariq, S., Nawaz, H., Ul-Haq, Z., & Mehmood, U. (2021). Investigating the relationship of aerosols with enhanced vegetation index and meteorological parameters over Pakistan. Atmospheric Pollution Research, 12(6), 101080. https://doi.org/10.1016/j.apr.2021.101080
  37. Willmott, C.J. (1984). On the evaluation of model performance in physical geography. Spatial Statistics and Models, 443-460. https://doi.org/10.1007/978-94-017-3048-8_23
  38. Wu, J., Kurosaki, Y., & Du, C. (2020). Evaluation of climatic and anthropogenic impacts on dust erodibility: A case study in Xilingol Grassland, China. Sustainability, 12(2), 629. https://doi.org/10.3390/su12020629
  39. Yu, C., Li, Z., & Blewitt, G. (2021). Global comparisons of ERA5 and the operational HRES tropospheric delay and water vapor products with GPS and MODIS. Earth and Space Science, 8(5), e2020EA001417. https://doi.org/10.1029/2020EA001417
  40. Zarrin, A., Salehabadi, N., Mofidi, A., & Dadashi-Roudbari, A.A. (2022). Investigation of Seasonal dust in northeastern Iran and numerical simulation of extreme dust events using WRF-CHEM model. Journal of the Earth and Space Physics, 48(2), 421-440. (In Persian). https://doi.org/10.22059/jesphys.2022.330319.1007361

 

CAPTCHA Image