دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه یاسوج

2 دانشگاه جیرفت

چکیده

جهت افزایش بهره­وری از خاک در کشاورزی پایدار، آگاهی از ویژگی­های مختلف آن ضروری می­باشد. پژوهش حاضر به منظور مطالعه نحوه تشکیل، طبقه­بندی، کانی­شناسی و میکرومورفولوژی خاک­های منطقه فاریاب در استان کرمان با رژیم رطوبتی و حرارتی اریدیک و هایپرترمیک، در سطوح ژئومورفیک مختلف انجام گرفت. اشکال اراضی منطقه شامل مخروط­افکنه، دشت رسوبی، اراضی پست و تپه در منطقه بودند. بر روی هر واحد ژئومورفیک، یک یا چند خاک­رخ حفر، تشریح و نمونه­برداری شدند. نمونه­های خاک تحت آزمایش­های معمول قرار گرفتند. نتایج نشان داد که با حرکت از واحدهای تپه و مخروط افکنه به سمت واحدهای پایین­دست، بافت خاک سنگین­تر، ظرفیت تبادل کاتیونی، ماده آلی، کربنات کلسیم معادل، هدایت الکتریکی، پ­هاش، نسبت سدیم جذبی، بیشتر و میزان گچ کمتر گردید. زیرگروه جدیـد Calcic Natrigypsids برای افزودن به تاکسونومی پیشنهاد می­شود. کانی­های رسی شامل ایلیت، پالیگورسکیت، کلریت، اسمکتیت، کائولینیت، ورمی­کولیت و کوارتز می­باشند. بیشترین میزان پالیگورسکیت در افق­های تجمعی گچ در واحدهای تپه و مخروط­افکنه بود و با حرکت به سمت واحدهای مرکزی دشت به میزان زیادی از مقدار آن کاسته و به میزان اسمکتیت افزوده شد. کانی­های کائولینیت، ایلیت و کلریت، کانی­های توارثی تشخیص داده شدند. بررسی مقاطع نازک نشان­دهنده­ وجود کربنات کلسیم به شکل­های نودول، پوشش در دیواره حفرات می­باشد. همچنین بلورهای گچ به فرم عدسی­شکل، کروی و بی‌شکل و یا پرشدگی و یا به صورت صفحات در هم قفل­شده مشاهده شدند. پوشش رسی در افق ناتریک در موقعیت اراضی پست در دیواره کانال­های خاک مشاهده شد. نتایج پژوهش، نمایانگر نقش مهم سطوح ژئومورفیک در تغییرپذیری ویژگی­های خاک­های منطقه مطالعاتی می­باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Genetic Study of Soil-landscape Relationship in Arid Region of Faryab, Kerman Province

نویسندگان [English]

  • Moghbeli Z. 1
  • S. Sanjari 2
  • E. Adhami 1

1 Yasouj University

2 Jiroft University

چکیده [English]

Introduction: In sustainable agriculture, it is essential to know soil various characteristics for increasing the soil productivity. The relationship between soil and geomorphology in arid and semi-arid regions has been considered by many researchers. Faryab plain is located in arid region of Kerman Province and has diversity in geomorphic positions and parent materials. No previous study has been conducted in this region. Therefore, the objectives of the present research were 1) to study the genesis and development of soils related to different geomorphic surfaces in Faryab region, 2) to study the physicochemical properties, clay mineralogy and micromorphology of soils, and 3) to classify the soils according to Soil Taxonomy (ST) (2014) and World Reference Base (WRB) (2015) systems and compare them.
Materials and Methods: Faryab region with a mean elevation of 630 m above sea level is located in Kerman province, south-eastern of Iran. Mean annual rainfall and temperature of the area are 160 mm and 23.8 oC, respectively. Soil temperature and moisture regimes of the area are thermic and aridic, respectively. From geological point of view, the studied area is a part of west and south west zones and Flysch zone of east of Iran. Ten representative pedons on different geomorphic units including hill, alluvil-colluvial fan, alluvial plain, and lowland were selected, sampled, and described. Routine physicochemical analyses, clay mineralogy, and micromorphological observations performed on soil samples. Soil pH, texture, electrical conductivity, calcium carbonate, Na, Ca, Mg, cation exchangeable capacity and gypsum were identified. Eight samples were selected for clay mineralogy investigations. Four slides including Mg saturated, Mg saturated treated with ethylene glycol, K saturated, and K saturated heated up to 550 oC were analyzed. A Brucker X-Ray diffractometer at 40 kV and 30 mA was used for XRD analyses. Undisturbed soil samples from some representative pedons were selected for micromorphological observations. A vestapol resin with stearic acid and cobalt as hardener was used for soil impregnation. A Lite petrographic microscope was used for micromorphology investigations.
Results and Discussion: The results of the present study indicated that the soils with more evolution were located on the geomorphic surfaces of the lowland and alluvial plain and the soils with lower development on the hill and alluvil-colluvial fan. The most important pedogenic processes of the soils were the eluviation of salt, gypsum, calcium carbonate as well as clay, and the formation of calcic, gypsic, petrogypsic and natric horizons. The soils of the region were classified using ST as Aridisols with three suborders of Argids, Calcids and Gypsids and classified according to the WRB as three soil reference groups of Solonetz, Gypsisols and Calcisolos. A new subgroup of Calcic Natrigypsids is suggested for inclusion to ST for the soils with aridic soil moisture regime and three horizons of gypsic, calcic and natric. The WRB system, due to its flexibility in the use of principle and supplementary qualifiers, prepare a better qualification than ST for the soils of the region. According to mineralogical results, the observed minerals consisted of illite, palygorskite, chlorite, smectite, kaolinite, vermiculite and quartz. The highest amount of palygorskite was observed in the gypsic horizons of hill and alluvil-colluvial fan. By moving to the central part of the plain (lowland), the amount of palygorskite was greatly reduced and the amount of smectite was increased. Two origins of inheritance and transformation (illite and palygorskite) are suggested for the occurrence of smectite in the soils. Due to the lack of the conditions for the formation of kaolinite, illite and chlorite, these minerals are inherited from parent materials. SEM observations suggested a pedogenic pathway for the occurrence of large amounts of palygorskite in the soils of the region. Calcareous and gypsiferous media seems to prepare a favorite environment for the pedogenic formation and stabilizing of this mineral in the studied soils. Coating and infilling of gypsum and calcite crystals in voids and channels, clay coating along chanels as well as Fe and Mn oxide nodules were among the common pedofeatures observed in the thin sections of the studied soils. Occurrence of variable habits of gypsum crystals in different geomorphic surfaces suggested a dynamic soil environment. Larger lenticular gypsum crystals were found in the soils with lighter texture located on more stable geomorphic surfaces.
Conclusion: Different geomorphic situations in the region affected the development and evolution, physicochemical properties, clay mineralogy, micromorphology and soil classification and caused the differences in these characteristics in the Faryab region.

کلیدواژه‌ها [English]

  • Arid climate
  • Clay mineralogy
  • Micromorphology
  • Soil classification
  • soil evolution
1- Abtahi A. 1980. Soil genesis as affected by topography and time in highly calcareous parent material under semiarid condition in Iran. Soil Science Society of America Journal 44: 329-336.
2- Abtahi A. 1989. Soil genesis as affected by topography and depth of saline and sodic ground water under semiarid condition of Iran. Iran Agricultural Research 8: 1-21.
3- Anjos L.H., Fernandes M.R., Pereira M.G., and Franzmeier D.P. 1998. Landscape and pedogenesis of an Oxisols-Inceptisols-Ultisols sequence in southeastern Brazil. Soil Science Society of America Journal 62: 1651-1659.
4- Bahoorzehi M.A., Farpoor M.H., and Jafari A. 2016. Genesis and development of soils along different geomorphic surfaces in Kouh Birk Area, Mehrestan City. Journal of Water and Soil 30: 555-568. (In Persian)
5- Boixadera J., Poch R.M., Garcia-Gonzalez M.T., and Vizcayno C. 2003. Hydromorphic and clay-related processes in soils from the Llanosde Moxos (Northern Bolivia). Catena 54: 403-424.
6- Borchardt G. 1989. Smectites. In: Dixon, J. B., S. B. Weed, (eds), 1989. Minerals in soil environment. 2nd ed. Number I in the SSSA book series. Published by SSSA. Madison. Wisconsin. USA.
7- Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agron 54: 464-465.
8- Farpoor M.H., Eghbal M.K., and Khademi H. 2003. Genesis and micromorphology of saline and gypsiferous Aridisols on different geomorphic surfaces in Nough area, Rafsanjan. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science 7(3): 71-93. (In Persian)
9- Farpoor M.H., Khademi H., and Eghbal M.K. 2002. Genesis and distribution of palygorskite and associated clay minerals in Rafsanjan soils on different geomorphic surface. Iran Agriculture Research 21: 39-60.
10- Fedoroff N., Courty M.A., and Thompson M.L. 1990. Micromorphological evidence of paleoenvironmental change in Pleistocene and Holocene paleosols. Developments in Soil Science 19: 653-665.
11- Fernandez Sanjurjo M.J., Corti G., and Ugolini F.C. 2001. Chemical and mineralogical changes in a polygenetic soil of Galicia, NW Spain. Catena 43: 251-265.
12- Geological survey and mineral exploration of Iran. 1995. Faryab map 1:100000. Tehran map publication.
13- Hashemi S.S., Baghernejad M., Owliaie H.R., and Najafi-Ghiri M. 2014. Effect of soil moisture regime on micromorphoogy of gypsum pedofeatures in soils of Fars province. Journal Water and Soil Conservation 21: 59-83.
14- IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome, Italy.
15- Jackson M.L. 1975. Soil Chemical Analysis-advanced Course. Univ. of Wisonsin College of Agric., Dept of Soils Science, Madison, WI.
16- Jafarzadeh A.A., and Burnham C.P. 1992. Gypsum Crystals in Soils. Soil Science, 43: 409-421.
17- Jenny H. 2011. Factors of Soil Formation-A System of Quantitative Pedology. Dover Inc, New York.
18- Karimi A., Khademi H., and Jalalian A. 2009. Genesis and distribution of palygorskite and associated sediments of southern Mashhad. Iranian Journal of Crystallography and Mineralogy 16: 545-558. (In Persian)
19- Kemp R.A. 1999. Soil micromorphology as a technique for reconstructing paleoenvironmental change. PP: 41-71. In: Singh V., and Derbyshire A.S. (Eds.), Paleoenvironmental Reconstruction in Arid Lands. Balkema Pub., The Netherlands.
20- Kemp R.A., and Zarate M.A. 2000. Pliocene pedosedimentary cycles in the southern Pampas, Argentina. Sedimentology 47:3-14.
21- Khademi H., and Mermut A.R. 2003. Micromorphology and classification of Argids and associated gypsiferous Aridisols from central Iran. Catena 54: 430-455.
22- Khormali F., Abtahi A., and Stoops G. 2006. Micromorphology of calcitic features in highly calcareous soils of Fars Province, southern Iran. Geoderma 132: 31-46.
23- Khormali F., Abtahi A., Mahmoodi S., and Stoops G. 2003. Argillic horizon development in calcareous soils of arid and semi-arid regions of southern Iran. Catena 776: 1-29.
24- Khormali F., and Abtahi A. 2003. Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay Minerals 38: 511-527.
25- Kittrik J.A., and Hope E.W. 1963. A procedure for the particle size separation of soil for X-ray diffraction analysis. Soil Science 96: 312-325.
26- Lanyon L.E., and Heald W.R. 1982. Magnesium, calcium, strontion and barium. p. 247-260. In A.L. Page et al. (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
27- Mahmoudian F., Karimi A., and Lakzian A. 2018. Investigation of the soil-landform relationship in South of Herat, Western Afghanistan. Journal Water and Soil 32(5): 905-918. (In Persian with English abstract)
28- Millot G. 1970. Geology of clay. Masson. Et Cie., Paris.
29- Moazallahi M., and Farpoor M.H. 2012. Soil genesis and clay mineralogy along the xeric aridic climotoposequence, South central Iran. Journal of Agricultural Science and Technology 14: 683-696.
30- Moazallahi M., and Farpoor M.H. 2009. Soil Micromorphology and Genesis along a Climotoposequence in Kerman Province, Central Iran. Australian Journal of Basic and Applied Sciences 3: 4078-4084.
31- Moghiseh E., and Heidari A. 2012. Polygenetic saline gypsiferous soils of the Bam region, Southeast Iran. Journal of Soil Science and Plant Nutrition 12(4): 729-746.
32- Murphy C.P. 1986. Thin Section Preparation of Soils and Sediments. AB Academic Publishers, Berkhamsted, Herts, UK.
33- Nelson D.W., and Sommers L.E. 1982. Total carbon, organic matter. p. 539-577. In Page A.L. et al. (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
34- Nelson R.E. 1982. Carbonate and gypsum. p. 181-196. In In Page A.L. et al. (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
35- Nettleton W.D., Flach K.W., and Brusher B.R. 1969. Argillic horizons without clay skins. Soil Science Society of America Proceedings 33: 121–125.
36- Noormandipoor F., Farpoor M.H., and Sarcheshmepoor M. 2014. Genesis, classification and clay mineralogy of saline gypsiferous soils in Koshkooiyeh-Anar area, Kerman. Iranian Journal of Crystallography and Mineralogy 22(2): 269-280. (In Persian)
37- Owliaie H.R. Najafi Ghiri M., and Shakeri S. 2018. Soil-landscape relationship as indicated by pedogenesis data on selected soils from Southwestern, Iran. Eurasian Journal Soil Science 7(2): 167-180.
38- Owliaie H.R., Adhami E., Najafi Ghiri N., and Shakeri S. 2018. Pedological Investigation of a Litho-Toposequencen a Semi-Arid Region of Southwestern Iran. Eurasian Soil Science 51(12): 1–15.
39- Owliaie H.R. 2012. Micromorphology of calcitic features in calcareous soils of Kohgilouye Province, Southwestern Iran. Journal of Agricultural Science and Technology 14: 225- 239.
40- Page A.L., Miller R.H., and Kenney D.R. 1992. Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
41- Paquet H., and Millot C. 1972. Geochemical evolution of clay minerals in the weathered products and soils of Mediterranean climates. p. 199-202. In: Proceedings of the 9th International Clay Conference. Madrid, Spain.
42- Sanjari S., Farpoor M.H. Eghbal M.K., and Esfandiarpoor I. 2011. Genesis, micromorphology and clay mineralogy of soils located on different geomorphic surfaces in Jiroft area. Journal of Water and Soil 25: 411-425. (In Persian with English abstract)
43- Sarmast M., Farpoor M.H. Esfandiarpour Boroujeni I. 2016. Comparing Soil Taxonomy (2014) and updated WRB (2015) for describing calcareous and gypsiferous soils, Central Iran. Catena 145: 83–91.
44- Schoeneberger P.J., Wysocki D.A., Benham E.C., and Soil Survey Staff. 2012. Field Book for Describing and Sampling Soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, Nebraska.
45- Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th edition. United States Department of Agriculture-Natural Resources Conservation Service, Washington, D.C., USA.
46- Stoops G. 2003. Guidelines for the Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, Madison, Wisconsin.
47- Toomanian N., Jalalian A., and Karimian Eghbal M. 2003. Application of the WRB (FAO) and US Taxonomy systems to gypsiferous soils in Northwest Isfahan, Iran. Journal of Agricultural Science Technology 5: 51-66.
48- Toomanian N., Jalalian A., and Eghbal M.K. 2001. Genesis of gypsum enriched soils in north-west Isfahan, Iran, Geoderma 99: 199–224.
49- Verheye W., and Stoops G. 1973. Micromorpholoical evidence for identification of an argillic horizon in Terra Rossa Soils. p. 817-831. In G.K. Rutherford (ed.) Soil Microscopy. The Limestone Press, Kingston, Canada.
CAPTCHA Image