دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

2 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

3 دانشیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه محقق اردبیلی

چکیده

استخراج نفت و تولید مشتقات نفتی متنوع باعث گسترش آلودگی در خاک­های اطراف مکان­های استخراج و پالایش نفت شده است. بزرگ­ترین نگرانی در این مورد، خطرات زیست محیطی این آلاینده­ها می­باشد. به منظور مطالعه تأثیر گیاه پالایی و زیست پالایی در خاک آلوده به نفت خام یک آزمایش فاکتوریل در قالب طرح کاملا تصادفی و در سه تکرار طراحی و اجرا گردید. فاکتورهای مورد مطالعه شامل سطوح آلودگی خاک با نفت خام شامل صفر (C0)، 2 درصد نفت خام (C1) و 4 درصد نفت خام (C2) و تیمارهای پالایشی شامل کاشت گیاه چمن (B1)، کاشت گیاه یونجه (B2)، کاشت چمن + تلقیح بذر با باکتری سودوموناس پیوتیدا + تلقیح خاک با قارچ فانروکت کریزوسپوریوم (B3)، کاشت یونجه + تلقیح بذر با باکتری سودوموناس پیوتیدا + تلقیح خاک با قارچ فانروکت کریزوسپوریوم (B4) و بدون کشت (شاهد) (B0) بودند. میزان عملکرد ماده خشک گیاهی، میزان حذف نفت خام و تنفس میکروبی برای نمونه­ها اندازه‌گیری شد. نتایج نشان داد غلظت ترکیبات نفتی باقیمانده در سطح C1 آلودگی نفت خام در اثر تیمارهای پالایشی B3 و B4 به‌ترتیب 59 و 5/56 درصد کاهش یافت و در سطح C2 آلودگی نفت خام نیز این تیمارهای پالایشی بترتیب 41 و 39 درصد غلظت ترکیبات نفتی خاک را کاهش دادند. تیمار پالایشی B3 دارای بیشترین عملکرد ماده خشک اندام هوایی بود. با افزایش سطح آلودگی نفت خام، عملکرد ماده خشک اندام هوایی و ریشه کاهش یافت. سطوح آلاینده‌های نفتی (C1 و C2) به‌ترتیب 46 و 61 درصد عملکرد ماده خشک ریشه، 53 و 63 درصد عملکرد ماده خشک اندام هوایی را کاهش دادند. بیشترین میزان تنفس میکروبی در تیمارهای پالایشی B3 و B4 مشاهده گردید. در هر سه سطح آلودگی اختلاف میزان تنفس میکروبی در تیمارهای پالایشی B1 و B2 با تیمار شاهد، معنی­دار نبود.
 

کلیدواژه‌ها

عنوان مقاله [English]

Evaluating the Effects of Co-using Phytoremediation and Bioremediation in a Crude Oil Contaminated Soil

نویسندگان [English]

  • A. Nemati 1
  • A. Golchin 2
  • A. Ghavidel 3

1 Ph.D. Student Soil Science Department, University of Zanjan

2 Professor of Soil Science Department, University of Zanjan

3 Associate Professor of Soil Science Department, University of Mohaghegh Ardabili

چکیده [English]

Introduction: Crude oil is one of the most important sources of energy and its large scale production, transmission, consumption and disposal, making it one of the most important and common types of environmental pollution worldwide. Oil extraction and various oil products have led to spread of pollution in the soils around oil extraction and refining sites. During the production and transportation of crude oil, unsuitable operation and leakage may result in contamination of soil with petroleum hydrocarbons. Great concern in this case is the environmental risks of these pollutants. During the past decades, bioremediation of petroleum contaminated soil has been a hot issue in environmental research, and many bioremediation strategies have been developed and improved to clean up petroleum polluted soil. The aim of this study was to compare the effects of co-using of different bioremediation strategies on remediation of crude oil contaminated soil.
Materials and Methods: In order to investigate the effects of co-using phytoremediation and bioremediation in a crude oil contaminated soil, a factorial experiment in completely randomized design with three replications was conducted. The factors were three levels of crude oil contamination (0 wt% (C0), 2 wt% (C1) and 4 wt% (C2() and four treatments of remediation (Grass (B1), Alfalfa (B2), Grass + Pseudomonas Putida+ Phanerochaete Chrysosporium (B3), Alfalfa + Pseudomonas Putida+ Phanerochaete Chrysosporium (B4), control (B0)). For amendment of contaminated soil, soil samples were artificially contaminated with crude oil (from Tabriz Oil Refinery) and blended to soil (10% total quantity of soil spiked) then spiked soils were progressively mixed with unpolluted soil and homogenized. After preparation of the crude oil-spiked soil microbial inoculation were done and then the samples were packed into soil columns and then plants cultivation was done in soil columns (P.V.C pipes). At the end of growth period, some parameters were measured including residual Total Petroleum Hydrocarbons (TPHs) concentration, microbial basal respiration and dry weight of root and shoot. 
Results and Discussion: The results showed that TPHs concentration in C1 crude oil level by B3 and B4 remediation treatments decreased by 59% and 57%, respectively, and in C2 level B3 and B4 remediation treatments decreased TPHs content by 41% and 39%, respectively. B3 remediation treatment had the highest shoot and root dry weight and the lowest root and shoot dry weight observed from B2 remediation treatment. Shoot and root dry weight decreased with increasing crude oil contamination levels. The highest basal respiration rate was observed in B3 and B4 remediation treatments. In all of crude oil levels, there was not significant difference between B1 and B2 remediation treatments and control (B0) in basal respiration rate. In the highest crude oil contamination level (C2) the amount of carbon produced as CO2 increased because this level has higher concentration of oil pollutants and therefore has more required substrate for the activity of microorganisms, and consequently more microbial activities increased CO2 production. Compared to the control, the levels of crude oil contamination (C1 and C2) decreased dry weight of root by 46% and 61%, respectively and dry weight of shoot by 53% and 63%, respectively. Considering that the high concentrations of oil contaminants in the soil can lead to toxicity for plants and microorganisms and also hydrophilic properties of these compounds can decrease the availability of moisture and nutrients for plants root, therefore the growth of root decreased in oil contaminated soil. In lower level of crude contamination (C1), remediation treatments have more effective role in refining crude oil. This results from more plant growth and then more plant roots which increase the bioavailability of hydrocarbons by reducing the volume of soil micro pores. Also plants root release organic compounds which would increase the population and activity of soil microbes and these cause to increase of oil compounds degradation and elimination.
Conclusion: Experimental results showed that remediation treatments which contained bacteria and fungi with plants caused to more oil compounds elimination, microbial basal respiration and dry weight of root and shoot. Therefore, it can be found the importance of the presence of microorganisms and the microbial activity with plants in order to degrade and remove the soil oil compounds.
Keywords: Bioremediation, Oil pollution, Residual oil compounds, Microbial basal respiration

کلیدواژه‌ها [English]

  • Oil pollution
  • Soil biological quality
  • Contaminants elimination
  • Purificator plants
1- Abedi Koupai J., Ghaheri E., Eslamian S.S., and Hosseini H. 2013. Investigation the kinetic models of biological removal of petroleum contaminated soil around oil pipeline using ryegrass. Journal of Water and Wastewater 25(89): 62-68. (In Persian)
2- Afzal M., Yousaf S., Reichenauer T.G., and Sessitsch A. 2012. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. International Journal of Phytoremediation 14: 35– 47.
3- Agency for Toxic Substances and Disease Registry. 1990. Public Health Statement, Creosote. (Accessed, May, 1999)
4- Alarcon A., Davies F.T., Autenneth R.L., and Zuberer D.A. 2008. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. International Journal of Phytoremediation 10: 251-263.
5- Alef K., and Nannipieri P. 2003. Methods in applied soil microbiology and biochemistry. Harcourt brace & company.
6- Cowie B.R., Greenberg B.M., and Slater G.F. 2010. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance 14C analysis of PLFA. Environmental Science of Technology 44: 2322–2327.
7- Cupers C., Pancras T., Grotenhuis T., and Rulkens W. 2002. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-B-cylodextrin and triton x-100 extraction techniques. Chemosphere 46: 1235-45.
8- Gadd G.M. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156: 609–643.
9- Gaskin S.E., and Bentham R.H. 2010. Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Science of the Total Environment 408: 3683–3688.
10- Gerhardt K.E., Huanga X.D., Glicka B.R., and Greenberg B.M. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Science 176: 20-30.
11- Gurska J., Wang W., Gerhardt K.E., Khalid A.M., Isherwood D.M., Huang X.D., Glick B.R., and Greenberg B.M. 2009. Three-year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environmental Science of Technology 43: 4472–4479.
12- Iraji Asibadi F., Mir Bagheri A., and Soliemani M. 2015. Phytoremediation of soil contaminated with oil hydrocarbons in around of Esfahan refinery. Water and Waste Water 3: 38-47. (In Persian)
13- Issoufi I., Rhykerd R.L., and Smiciklas K.D. 2006. Seedling growth of gronomic crops in crude oil contaminated soil. Agronomy and Crop Science 192: 310.
14- Jagtap S.S., Woo S.M., Kim T.S., Dhiman S.S., Kim D., and Lee J.K. 2014. Phytoremediation of diesel-contaminated soil and saccharification of the resulting biomass. Fuel 116: 292–298.
15- Joner E.J., Leyval C., and Colpaert J.V. 2006. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environmental Pollution 142: 34-38.
16- Jones, J.B.J. 2001. Laboratory guide for conducting soil tests and plant analysis. Boca raton, London, New York and Washington, D.C. CRC press. P. 152-153.
17- Kuo H.C., Juang D.F., Yang L., Kuo W.C., and Wu Y.M. 2014. Phytoremediation of soil contaminated by heavy oil with plants colonized by mycorrhizal fungi. International Journal of Environmental Science Technology 11: 1661–1668.
18- Liste H.H., and Felgentreu D. 2005. Crop growth culturable bacteria and degradation of petrol hydrocarbons (PHCs) in a long term contaminated field soil. Applied Soil Technology, 31: 43-52.
19- Merkl N., Kraft R.S., and Infant C. 2004. Phytoremediation of petroleum- contaminated soils in the tropics – Preliminary assessment of the potential of species from eastern Venezuela. Journal of Applied Botany and Food Quality 78(3): 185–192.
20- Moubasher H.A., Hegazi A.K., Mohamed N.H., Mostafa Y.M., Kabiel H.F., and Hamed A.A. 2015. Phytoremediation of soil polluted with crude petroleum oil using Bassia scoparia and its rhizosphere microorganisms. International Biodeterioration and Biodegradation 98: 113–120.
21- Muratova A.Y., Golubev S.N., Dubrovskaya E.V., Pozdnyakova N.N., Panchenko L.V., Pleshakova E.V., Chernyshova M.P., and Turkovskaya O.V. 2012. Remediating abilities of different plant species grown in diesel-fuel-contaminated leached chernozem. Applied Soil Ecology 56: 51–57.
22- Peng S., Zhou Q., Cai Z., and Zhang Z. 2009. Phytoremediation of petroleum contaminated soils by Mirabilis jalapa L. in a greenhouse plot experiment. Journal of Hazardous Materials 168: 1490–1496.
23- Polyak Y.M., Bakina L.G., Chugunova M.V., Mayachkina N.V., Gerasimov A.O., and Bure V M. 2018. Effect of remediation strategies on biological activity of oil-contaminated soil- A field study. International Biodeterioration and Biodegradation 126: 57–68.
24- Rezek J., Wiesche C., Mackova M., Zadrazil F., and Macek T. 2008. The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil. Chemosphere 70: 1603–1608.
25- Sarvi Moghanlo V., Chorom M., Falah M., and Motamedy H. 2012. Evaluation the effect of myccorhiza and degrading bacteria in enhancing phytoremediation of oil compound in oil contaminated soil. Journal of Water and Soil 26(4): 832-841. (In Persian with English abstract)
26- Seyedalikhani S., Shorafa M., and Asgharzadeh A. 2010. Efficiency of bacillus bacteria in bioremediation of hydrocarbon contaminated soil. Journal of Water and Soil Science 3(21): 91-101. (In Persian with English abstract)
27- Sharari M., Roohani M., Jahan Latibari A., Guillet A., Aurousseauc M., and Sharari M. 2013. Treatment of Bagasse preparation effluent by phanerochaete chrysosporium immobilized on polyurethane foam: Enzyme production versus pollution. Industrial Crops and Products 46: 226–233
28- Singh A., Kuhad R., and Ward O. 2009. Advances in Applied Bioremediation. Springer Verlag, Berlin.
29- Sorkhoh N.A., Ali N., Salamah S., Eliyas M., Khanafer M., and Radwan S.S. 2010. Enrichment of rhizospheres of crop plants raised in oily sand with hydrocarbonutilizing bacteria capable of hydrocarbon consumption in nitrogen free media. International Biodeterioration and Biodegradation 64: 659–664.
30- U.S. EPA. 2001. Guideline for the bioremediation of marine shorelines and fresh water wetland. Office of research and development, US Environmental Protection Agency.
31- Van Hecke M.M., Treonis A.M., and Kaufman J.R. 2005. How does the fungal endophyte Neotyphodium coenophialum affect tall fescue (Festuca arundinacea) rhizodeposition and soil microorganisms? Plant Soil 275: 101–109.
32- Wang H., Xu R., Li F., Qiao J., and Zhang B. 2010. Efficient degradation of lube oil by a mixed bacterial consortium. Journal of Environmental Sciences 22: 381–388.
33- Wang J., Zhang Z., Su Y., He W., He F., and Song H. 2008. Phytoremediation of petroleum polluted soil. Petroleum Science 5(2): 167-71.
34- Wang Z., Xu Y., Zhao J., Li F., Gao D., and Xing B. 2011. Remediation of petroleum contaminated soils through composting and rhizosphere degradation. Journal of Hazardous Materials,190: 677–685.
35- Wyszkowski M., and Ziolkowska A. 2009. Role of compost, bentonite and calcium oxide in restricting the effect of soil contamination with petrol and diesel oil on plants. Chemosphere 74: 860–865.
36- Xiao N., Liu R., Jin C., and Dai Y. 2015. Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecological Engineering 75: 384–391.
37- Yousaf S., Afzal M., Reichenauer T.G., Brady C.L., and Sessitsch A. 2011. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environmental Pollution 159: 2675–2683.
38- Zhang Z., Rengel Z., Chang H., Meney K., Pantelic L., and Tomanovic R. 2012. Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma 175–176: 1–8.
CAPTCHA Image