دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی دکترای بیولوژی گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

طی سال­های اخیر استفاده از ریزجانداران خاکزی جهت کاهش اثرات مخرب آلاینده­های زیست‌محیطی همانند نفت و مشتقات آن بسیار مورد توجه قرار گرفته است. تجزیه­پذیری و در نتیجه ماندگاری ترکیبات هیدروکربنی در طبیعت، تحت تأثیر عواملی مختلفی است که مهمترین آن­ها شامل شرایط محیطی، فعالیت تجزیه کنندگی ریزجاندارن، نوع آلاینده و میزان دسترسی زیستی آلاینده برای ریزجاندارن می­باشد. عوامل فعال سطحی یا سورفاکتانت­ها موجب افزایش تحرک و تجزیه زیستی ترکیبات هیدروفوب شده و بنابراین دارای اثر مثبت بر فرآیند زیست پالایی است. از سوی دیگر، علی‌رغم آن­که تجزیه زیستی هیدروکربن­های پلی­آروماتیک فرآیندی بالقوه و طبیعی است، اما ترکیبات چند جزئی و هیدروکربن­هایی با وزن مولکولی بالا، جهت تجزیه به بیش از یک گونه میکروبی کارآمد نیاز دارند. در بررسی حاضر با استفاده از روش­های جداسازی و غربالگری، جدایه­های توانمند تجزیه کننده آلاینده بنزوپیرن (به عنوان منبع کربنی) و تولید کننده سورفاکتانت زیستی، انتخاب و توانایی جدایه­های منفرد و دسته­باکتریایی 4 حاصل از آن­ها بر میزان تجزیه آلاینده در دو محیط محلول و خاک با هم مقایسه شد. نتایج نشان داد که از میان جدایه­های حاصل از مرحله جداسازی، دو جدایه AP3 و BM1 به ترتیب با 43 و 40 درصد کاهش میزان کشش سطحی محیط کشت نسبت به شاهد (فاقد تلقیح جدایه) دارای توانایی تولید سورفاکتانت زیستی بودند. بهینه­سازی شرایط تولید سورفاکتانت زیستی حاکی از آن بود که جدایه­های یاد شده در دمای 35 درجه سانتی­گراد، اسیدیته 7 و در حضور قند گلوکز به عنوان منبع کربنی سهل­الوصول بیشترین میزان تولید سورفاکتانت زیستی را نشان داده و در مقایسه با شاهد (دمای 25 درجه سانتی­گراد، اسیدیته 6 و قند گلوکز با کشش سطحی 42/56 میلی­نیوتن بر متر) کشش سطحی کمتری (81/30 و 52/31 میلی­نیوتن بر متر به ترتیب در جدایه­های AP3 و BM1) را ایجاد نمودند. تجزیه آلاینده بنزوپیرن در محیط محلول توسط دو جدایه و دسته­باکتریایی حاصل از آن نشان داد که بیشترین میزان تجزیه در تیمار تلقیح شده با دسته­باکتریایی و در حضور سورفاکتانت زیستی استخراج شده از جدایه AP3 رخ داد. این تیمار سبب تجزیه 3/87 درصد از آلاینده طی دو هفته شد. در حالی‌که جدایه BM1 با 6/27 درصد تجزیه آلاینده، کمترین اثر را بر تجزیه بنزوپیرن در محیط محلول داشت. مقایسه تجزیه بنزوپیرن در خاک نیز مشخص کرد که تأثیر دسته­باکتریایی بیشتر از جدایه AP3 به تنهایی می­باشد. بطوری‌که در انتهای 45 روز، غلظت آلاینده در تیمار حاوی دسته­جات و سورفاکتانت زیستی صفر و در تیمار تلقیح شده با جدایه AP3 از 150 میلی­گرم بر کیلوگرم به 48 میلی­گرم بر کیلوگرم رسید. نتایج نشان داد که بعد از 45 روز، جدایه AP3 آلاینده را به میزان 68 درصد و دسته­باکتریایی آلاینده را بطور کامل تجزیه نمودند.

کلیدواژه‌ها

عنوان مقاله [English]

Benz (a)pyrene Biodegradation Improvement Using the Biosurfactant Producing Bacterial Consortium

نویسندگان [English]

  • S. Soleymani 1
  • A. Lakzian 2
  • A. Fottovat 2

1 PhD. Student of Biology Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, respectively.

2 Professor Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, respectively.

چکیده [English]

Introduction: Environmental contamination by crude oil and its various processing products is becoming a common phenomenon which severely damages soil and groundwater resources. Among the constituents of oil waste, polycyclic aromatic hydrocarbons (PAHs) are of environmental concern because of their toxic, mutagenic and/or carcinogenic effects. Bioremediation involves the use of living microorganisms, bacteria or fungi, for detoxification of soil and water organic pollutants by biodegradation, biotransformation, and/or mineralization. Collaboration between different microbes under co-culture conditions such as co-metabolism or antagonism makes the system to perform better than a single microorganism. Total petroleum degradation is a result of a microbial consortium action, which is composed of different species with specific biochemical roles. On the other hand, the majority of components of petroleum products has low solubility in water and tends to bind to soil particles reducing their availability to  microorganisms for degradation. This has been well described as a major limitation to the bioremediation of hydrocarbon contamination. The surfactants can be employed to enhance hydrocarbon biodegradation by mobilization, solubilization, or emulsification. Some microorganisms synthesize a wide range of surface-active compounds, generally called biosurfactants, which increases the bioavailability of these compounds. The application of these microbial surfactants in the remediation of hydrocarbons aims to increase their bioavailability or mobilize and remove the contaminants by pseudo-solubilization and emulsification in a treatment process. This work aimed to investigate the impact of the biosurfactant producing consortium on the benzo(a)pyrene biodegradation.
Materials and Methods: Four gasoline contaminated soils were enriched in Bushnell-Hass mineral medium with Benzo(a)pyrene (200 mg/l) for three months at 30°C. After this time, to obtain Benzo(a)pyrene-degrading isolates, 0.1 ml of soil suspensions were plated on BH agar plates containing pollutant. Three colonies with different morphological distinct properties were purified on LB agar plates. The screening of the most potent surfactant strain was assayed quantitatively using measurement of surface tension by the Du Nouy ring method. For increasing the production of biosurfactant, medium conditions including pH (6, 7, 8), temperature (25, 30, 35) and carbon source (glucose, sucrose and ribose) were optimized with fractional factorial based on Taguchi. The capability of the isolates and consortium in hydrocarbon biodegradation was investigated in liquid medium of Bushnell-Hass with 150 ppm of Benzo(a)pyrene, during 14 days. Treatments included inoculation of isolates AP3 and BM1 and their consortium in presence and absence of extracted isolates biosurfactants and control (no isolate and biosurfactant). Based on the results of Benzo(a)pyrene degradation in the liquid medium, AP3 isolate, consortium and biosurfactant extracted from AP3 were selected for soil experiment. Four sets of biodegradation experiments were carried out with soil contaminated by 150 ppm of benzo(a)pyrene for 45 days, as follows: set 1: soil + AP3 isolate; set 2: soil + consortium; set 3: soil + consortium + AP3 biosurfactant and set 4: blank (soil). The residual concentrations of contaminant were extracted on days 15, 30 and 45 by dichloromethane solvent and analyzed using GC-FID.
Results and Discussion: The results revealed that strains AP3 and BM1 showed a significant potential to produce surface-active agents in the presence of Benzo(a)pyrene as substrate, reducing the surface tension to 43 and 46 mN/m, respectively. Taguchi experimental design method was applied in order to optimize the biosurfactant production by isolates. Results of experiments indicated that the optimum biosurfactant production conditions were found to be temperature of 35º C and  pH of 7, and glucose as water soluble carbon source. The produced biosurfactant reduced surface tension to 31/52 mN/m and 30/81 mN/m for BM1 and AP3, respectively. Biodegradation experiments of Benzo(a)pyrene in liquid cultures showed that the overall biodegradation efficiency of the individual isolates after 14 days was lower than consortium. Bacterial consortium enhanced degradation of contaminant to 87.3% (with addition of biosurfactant) compared to 27.6% of removal in presence of BM1 isolate. However, there was no statistically significant change in the degradation rates of contaminant in consortium with addition of AP3 and BM1 surfactant and surfactant free (87.3, 85.6 and 86.8%, respectively). The degradation of Benzo(a)pyrene was significantly enhanced in presence of AP3 biosurfactant at individual BM1 treatments (28.3 and 44.5 to 74.8%). Maximum degradation of Benzo(a)pyrene in contaminated soil was found (100%) in set 3: soil + consortium + AP3 biosurfactant. Based on GC-MS analyses, it degraded around 100% of penzo(a)pyrene, used as the sole carbon and energy source, at an initial concentration of 150 mg L-1, after 45 days of incubation, while alone consortium and isolate were able to remove 86% and 68% of hydrocarbon, respectively. Overall, these results provide evidence that consortium and AP3 biosurfactant could be potential candidates for further bioremediation.
Conclusion: The results revealed that the hydrocarbon removal efficiency of the consortium was higher than single species, and the final removal efficiency for the consortium could be reached in a considerably shorter time. The results suggest that biosurfactant-assisted bioremediation may be a promising practical bioremediation strategy for aged PAH-contaminated soils. It is evident from the results that the consortium alone and its producer species are both capable of promoting biodegradation to a large extent.

کلیدواژه‌ها [English]

  • Benz(a)pyrene Biodegradation
  • Biodegradation
  • Biosurfactant
  • Consortium
  • Hydrocarbon
1- Bacosa H., Suto K., and Inoue C. 2010. Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. International Biodeterioration and Biodegradation 64: 702–710.
2- Bacosa H.P., Suto K., and Inoue C. 2012. Bacterial community dynamics during the preferential degradation of aromatic hydrocarbons by a microbial consortium. International Biodeterioration and Biodegradation 74: 109-115.
3- Bai N., Wang Sh., Abuduaini R., Zhang M., Zhu X., and Zhao Y. 2017. Rhamnolipid-aided biodegradation of carbendazim by Rhodococcus sp.D-1: Characteristics, products, and phytotoxicity. Science of the Total Environment 590-591: 343-351.
4- Barin R., Talebi M., and Beheshti M. 2014. Fast bioremediation of petroleum-Contaminated soil by consortium of biosurfactant/bioemulsifier producing bacteria. International Journal of Environmental Science and Technology 11(6): 1701-1710.
5- Bezza F.A., and Chirwa E.M.N. 2016. Pyrene biodegradation enhancement potential of Lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. Journal of Hazardous Materials 318: 218-227.
6- Bodour A., and Miller-Maier R.M. 1998. Application of a modified drop collapse technique for surfactant quantification and screening of biosurfactant-producing microorganism. Journal of Microbiological Methods 32: 273-280.
7- Bushnell and Haas. 1941. Journal of Bacteriology 41: 653.
8- Chebbi A., Hentati D., Zaghden H., Baccar N., Rezgui F., Chalbi M., Sayadi S., and Chamkha M. 2017. Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. International Biodeterioration and Biodegradation 122: 128-140.
9- Chen S.Y., Wei Y.H., and Chod J.S. 2007. Repeated pH-salt fed-batch fermentation for rhamnoloipid production with indigenous Pseudomonas aeruginosa S2. Applied Microbiology and Biotechnology 76: 67-74.
10- Das K., and Mukherjee A.K. 2007. Crude petroleum-oil biodegradation efficiencyof Bacillus subtilis and Pseudomonas aeruginosa strains isolated from petroleum oil contaminated soil from North-East India. Bioresource Technology 98: 1339-1345.
11- Das P., Mukherjee S., and Sen R. 2008. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72: 1229–1234.
12- Dhote M., Kumar A., and Juwarkar A. 2018. Petroleum contaminated oil sludge degradation by defined consortium: Influence of biosurfactant production. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 88(2): 517- 523.
13- Eriksson M., Sodersten E., Yu Z., Dalhammar G., and Mohn W.W. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Applied and Environmental Microbiology 69: 275-284.
14- Ghazali F.M., Addul Rahman R.N.Z., Salleh A., and Mahiran B. 2004. Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration and Biodegradation 54: 61-67.
15- Hamzah A., Sabturani N., and Radiman. 2013. Screening and optimization of biosurfactant production by the hydrocarbon-degrading bacteria. Sains Malaysiana 42(5): 615-623.
16- Hilyard E.J., Jones-meehan J.M., Spargo B.J., and Hill R.T. 2008. Enrichment, isolation and phylogenetic identification of polycyclic aromatic hydrocarbon-degrading bacteria from Elizabeth river sediments. Applied and Environmental Microbiology 74(4): 1176-1182.
17- Hu X., Wang C., and Wang P. 2015. Optimization and characterization of biosurfactant production from marine Vibrio sp. Strain 3B-2. Frontiers in Microbiology 6: 1-110.
18- Kamyabi A., Nouri H., and Moghimi H. 20117. Synergistic effect of Sarocladium sp. and Cryptococcus sp. co-Culture on crude oil biodegradation and biosurfactant production. Applied Biochemistry and Biotechnology 182(1): 324-334.
19- Kanaly R.A., and Harayama SH. 2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology 182(8): 2050-2067.
20- Larik L.A., Qazi M.A., Phulpoto A.H., Haleem A., Ahmed S., and Kanhar N.A. 2017. Stenotrophomonas maltophilia strain 5DMD: an efficient biosurfactant‑producing bacterium for biodegradation of diesel oil and used engine oil. International Journal of Environmental Science and Technology 1-10.
21- Li L., Li Q., Li F., Shi Q., Yu B., Liu F., and Xu P. 2006. Degradation of carbazole and its derivatives by a Pseudomonas sp. Applied Microbiology and Biotechnology 73: 941-948.
22- Lily M.K., Bahuguna A., Dangwal K., and Garg V. 2009. Degradation of Benzo (a) Pyrene by novel strain Bacillus subtilis BMT4i (MTCC 9447). Brazilian Journal of Microbiology 40: 884-89.
23- Lotfabad T.B., Sourian M., Roostazad R., Najafabadi A.R., Adelzadeh M.R., and Noghabi K.A. 2009. An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids and Surfaces B: Biointerfaces 69: 183-193.
24- Mnif I., Rihab S., and Dhouha Gh. 2017. Application of bacterial biosurfactant for enhanced removal and biodegradation of disel oil in soil using a newly isolated consortium. Process Safety and Environmental Protection 109: 72-81.
25- Mnif I., Sahnoun R., and Ellouze-Chaabouni S. 2013. Evaluation of B. subtilis SPB1 biosurfactants potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design. Environmental Sscience and Pollution Research International 2: 851-861.
26- Mnif I., Sahnoun R., Ellouze-Chaabouni S., and Ghribi D. 2013a. Evaluation of B. subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design. Environmental Science and Pollution Research 21(2): 851-861.
27- Mohanty S., and Mukherji S. 2013. Surfactant aided biodegradation of NAPLs by Burkholderia multivorans: comparison between Triton X-100 and rhamnolipid JBR-515. Colloids and Surfaces B: Biointerfaces102: 644–652.
28- Montagnolli R.N., Lopes P.R.M., and Bidoia E.D. 2015 Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Environmental Monitoring and Assessment 187: 4116-4133.
29- Mukherjee A.K., and Bordoloi N.K. 2012. Biodegradation of benzene, toluene, and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium. Environmental Science and Pollution Research 19: 3380-3388.
30- Owsianiak M., Chrzanowski L., Szulc A., Staniewski J., Olszanowski A., Olejnik-Schimdt A.K., and Heipieper H. 2009. Biodegradation of diesel/biodiesel blends by consortium of hydrocarbon degraders: Effect of the type of blend and addition of biosurfactants. Bioresource Technology 100: 1497-1500.
31- Parvaresh B.V., Soniyamby A.R., Mariappan C., Kavithakumari P., Palaniswamy M., and Lalitha S. 2011. Biosurfactant production by Psedomonas Sp from soil using whey as carbon source. New York Science Journal 4(4): 100-103.
32- Patowary K., Patowary R., Kalita M.C., and Deka S. 2016. Development of an Efficient Bacterial Consortium for the Potential Remediation Consortium for potential remediation of hydrocarbons from contaminated sites. Frontiers in Microbiology 7: 1092.
33- Patowary R., patowary K., Kalita M.GH., and Deka S. 2018. Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil. International Biodeterioration and Biodegradation 129: 50-60.
34- Pereira J.F.B., Gudina E.J., Costa R., Vitorino R., Teixeira J.A., Coutinho J.A.P., et al. 2013. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111: 259-68.
35- Pugazhendi A., Qari H., Al-Badry Basahi J.M., Godon J.J. and Dhavamani J. 2017. Role of a halothermophilic bacterial consortium for the biodegradation of PAHs and the treatment of petroleum wastewater at extreme conditions. International Biodeterioration and Biodegradation. 121: 44-54.
36- Robert M., Mercade M.E., Bosch M.P., Parra J.L., Espuny M.J., Manresa M.A., and Guinea J.1989. Effect of the carbon source on Biosurfactant Production by Psuedomonas aeruginosa 44T1. Biotechnology Letters 11: 871-874.
37- Sathishkumar M., Binupriya A. R., Baik S.H., and Yun S.E. 2008. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean 36: 92-96.
38- Singh G.B., Gupta S., and Gupta N. 2013. Carbazole degradation and biosurfactant production by newly isolated Pseudomonas sp. strain GBS.5. International Biodeterioration and Biodegradation 84: 35-43.
39- Srikanth Reddy M., Naresh B., Leela T., Prashanthi M., Madhusudhan N.CH., Dhanasri G., and Devi P. 2010. Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresource Technology 101: 7980-7983.
40- Tzintzun-Camacho O., Loera O., Ramirez-saad H.C., and Gutierrez-Rjas M. 2012. Comparison of mechanisms of hexadecane uptake among pure and mixed cultures derived from a bacterial consortium. International Biodeterioration and Biodegradation 70: 1-7.
41- Urum K., and Pekdemir T. 2004. Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57: 1139-1150.
42- Viisimaa M., Karpenko O., Novikov V., Trapido M., and Goi A. 2013. Influence of biosurfactant on combined chemical-biological treatment of PCB-contaminated soil. Chemical Engineering Journal 220: 352–359.
43- Wongwongsee W., Chareanpat P., and Pinyakong O. 2013. Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand. Marine Pollution Bulletin 74: 95-104.
44- Wu J.Y., Yeh K.L., Lu W.B., Lin C.L., and Chang J.S. 2008. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresource Technology 99:1157–1164.
45- Xu R., Zhang Z., Wang L., Yin N., and Zhan X. 2018. Surfactant-enhanced biodegradation of crude oil by mixed bacterial consortium in contaminated soil. Environmental Science and Pollution Research 15: 14437-14446.
46- Yin H., Qjang J., Jia Y., Ye J., Peng H., Qin H., Zhang N., and He B. 2009. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochemistry 44: 302-308.
CAPTCHA Image