دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه ارومیه

2 مؤسسه تحقیقات دیم کشور

3 دانشگاه مراغه

4 سایر

چکیده

پایش سریع و غیر مخرب نیتروژن آسمانه گیاهی در محصولات زراعی به ویژه گیاه گندم برای مدیریت دقیق نیتروژن بسیار حائز اهمیت است. آنالیز­های شیمیایی رایج برای تعیین وضعیت عناصر غذایی گیاهان معمولاً استفاده از روش­های آزمایشگاهی می­باشد. این روش­ها اغلب زمان­بر، پرهزینه همراه با تخریب بافت­های گیاهی می­باشند. لذا بررسی و به کارگیری روش­های سریع و کم هزینه می­تواند به مدیریت هر چه بهتر مزارع کمک نماید. در این راستا، هدف از این پژوهش ارزیابی کارایی تصاویر سنجنده ETM+ در تعیین مقدار نیتروژن آسمانه گیاهی بود. به همین منظور، در 45 مزرعه از مزارع گندم دیم شمالغرب ایران، همبستگی بین داده­های انعکاسی به دست آمده از باندهای تصاویر ماهواره­ لندست 7 و مقدار نیتروژن اندازه­گیری شده در آزمایشگاه به دست آمد. بالاترین و پایین ترین مقدار نیتروژن آسمانه گیاهی اندازه­گیری شده در منطقه مورد مطالعه بترتیب 6/1 و 79/0 درصد و میانگین آن 11/1 درصد بود و همبستگی نسبتاً بالایی بین باندهای مختلف تصویر سنجنده ETM+ بجز باند 4 و مقدار نیتروژن آسمانه گیاهی وجود داشت. با توجه به همبستگی بالای بین داده­های انعکاسی باندهای مختلف (از 816/0 تا 841/0) و به منظور کاهش حجم و تکرار محاسبات تجزیه به مؤلفه­های اصلی بین داده­های باندهای مختلف تصویر ETM+ انجام گرفت. در نهایت رابطه رگرسیونی بین مؤلفه اصلی اول استاندارد شده (ZPC1) و میزان نیتروژن آسمانه گیاهی ایجاد شد. نتایج نشان داد که رابطه رگرسیونی قوی و معنی­داری  بین مقدار نیتروژن آسمانه گیاهی و مؤلفه ZPC1 با 71/0  R2= وجود دارد. با توجه به دقت کافی مدل رگرسیونی ایجاد شده، می­توان نتیجه­گیری کرد که از داده­های سنجش از دور می­توان برای مدیریت و پایش دقیق­تر وضعیت نیتروژن مزارع گندم دیم کشور استفاده کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of Canopy Nitrogen in Dryland Wheat using ETM+ Satellite Images in South of West Azerbaijan Province

نویسندگان [English]

  • Mirhassan Rasoulsiadaghiani 1
  • Vali Feiziasl 2
  • Ebrahim Sepehr 1
  • Mehdi Rahmati 3
  • Salman Mirzaee 4

1

2 Dryland Agricultural Research Institute

3 University of Maragheh

4 Other

چکیده [English]

Introduction: In cereal crops, nitrogen is the most important element for maintaining growth status and enhancing grain yield. Nitrogen is an important constituent of the chlorophyll molecule and the carbon-fixing enzyme ribulose-1, 5-bis-phosphate carboxylase/oxygenase. Therefore, providing enough nitrogen to achieve optimal yield is essential. Common chemical analyzes are used to determine the nutrient elements of plants using laboratory methods. Conventional laboratory techniques are expensive, laborious, and time-consuming. Determination of plant biochemical content by remote sensing could be used as an alternative method  which reduce the problems of laboratory analyses. Expensive and time-consuming direct determination of the nutritional status of the plant play an important role in the quantitative and qualitative yield of the product. However, exposure to rainfed wheat nutrient stresses (in particular, nitrogen) compared to irrigated wheat resulting in attempts to evaluate these features with acceptable accuracy without the direct measurement. In this regard, remote sensing data and satellite images are of the basic dryland management and optimal wheat production methods. As such, it collects massive information periodically from the surface of the planet, and it is easy to use this timely information to identify the stresses and apply appropriate agronomic methods in order to counteract them or reduce their negative impact on the production of this strategic product. Therefore, the goal of this study was to determine the nitrogen concentration of dryland wheat in the laboratory and its fitting with ETM+ images, evaluate the accuracy of remote sensing in determining the total nitrogen content of the plant and establish a regression relationship to estimate the amount of canopy nitrogen in the plant.
Material and Methods: This research was undertaken in parts of the south of the West Azerbaijan Province in Iran. The sampling was done from 45 dryland wheat fields using a stratified random method in May 2016. The wheat canopy nitrogen was determined using the Kjeldahl method. Satellite images of the ETM+ were downloaded on the USGS website. Then the required pre-processing was performed on images to reduce systematic and non-systematic errors. Statistical analyses were performed by excel and SPSS. Descriptive statistics and correlations were obtained between reflectance data obtained from various satellite bands and nitrogen measured in the laboratory. Correlated variables among the reflectance data of different bands were analyzed by principal component to reduce repeat calculations. The regression relationship between the plant canopy nitrogen and the first principal component has been evaluated using the stepwise regression method. To draw the plant canopy nitrogen, map, the equation was obtained and the ETM+ image has been used for land uses. Finally, the map of canopy N distribution at the studied area was drawn.
Results and Discussion: The results showed that nitrogen content varied from 1.6% to 0.79%, with an average of 1.11%. The normality data was verified by the Shapiro Wilk test. The results of the Pearson correlation showed that the wheat canopy nitrogen has a high correlation with digital number values of all bands of satellite images except band 4, so that it has the highest and the least correlation with band 2 and band 4, respectively. The correlation between remote sensing data in different bands was also evaluated using bi-plot statistics, which results showed a high correlation between all bands except band 4 with the first one of the principal component (PC1). Therefore, only PC1 data has been used to study the regression relationships between wheat canopy nitrogen and remote sensing data. A regression equation  between wheat canopy nitrogen and ZPC1 (R2= 0.71) was developed. ZPC1 is obtained according to the following formula:  where ZPC1 is the standardized Z parameter, is the average of PC1 and the ????pc1 is the standard deviation of PC1. Finally, the map of canopy N distribution was drawn to the studied area. According to the results of this study, the application of remote sensing data such as Landsat ETM+ data is a very important variable for improving and managing the prediction of wheat canopy nitrogen.
Conclusion: Overall, the results indicated that the remote sensing data provide more accurate and timely information from the drylands of Iran to manage farm fertilization and prevent the decline in yields at critical points. However, proper management to avoid the fertilizer loss by precise and timely application of N-fertilizer is needed.

کلیدواژه‌ها [English]

  • First one of the principal component
  • Nitrogen
  • Remote sensing
1- Babar M., Reynolds M., Van Ginkel M., Klatt A., Raun W., and Stone M. 2006. Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation. Crop Science 46(2): 578-588.
2- Bausch W.C., and Khosla R. 2010. Quick Bird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize. Precision Agriculture 11(3): 274-290.
3- Blackmer T.M., Schepers J.S., Varvel G.E., and Walter-Shea E.A. 1996. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agronomy journal 88(1): 1-5.
4- Bonfil D.J., Karnieli A., Raz M., Mufradi I., Asido S., Egozi H., Hoffman A., and Schmilovitch Z. 2004. Decision support system for improving wheat grain quality in the Mediterranean area of Israel. Field Crops Research 89(1): 153-163.
5- Bouaziz M., Matschullat J., and Gloaguen R. 2011. Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil. Comptes Rendus Geoscience 343(11): 795-803.
6- Carre F., and Girard M.C. 2002. Quantitative mapping of soil types based on regression kriging of taxonomic distances with landform and land cover attributes. Geoderma 110(3): 241-263.
7- Clevers J.G.P.W., and Gitelson A.A. 2013. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -. 3. Int. J. Appl. Earth Obs. Geoinform 23: 344–351.
8- Darvishzadeh R., Skidmore A.K., Schlerf M., Atzberger C.G., and Cho M.A. 2008. LAI and Chlorophyll Estimation for a Heterogeneous Grassland Using Hyperspectral Measurements. ISPRS J. Photogramm 63: 409-426.
9- Daughtry C., Walthall C., Kim M., De Colstoun E.B., and McMurtrey Iii J. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing of Environment 74(2): 229-239.
10- Gabriel K.R.: The biplot graphic display of matrices with application to principal component analysis, Biometrika, 58, 453–467, https://doi.org/10.2307/2334381, 1971.
11- Ghasemloo N., Mobasheri M., and Rezaei Y. 2011. Vegetation species determination using spectral characteristics and artificial neural network (SCANN). Journal of Agricultural Science and Technology 13: 1223-1232.
12- Gitelson A.A., Viña A., Arkebauer T.J., Rundquist D.C., Keydan G., and Leavitt B. 2003. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters 30(5).
13- Haboudane D., Miller J.R., Tremblay N., Zarco-Tejada P.J., and Dextraze L. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote sensing of environment 81(2-3): 416-426.
14- Jia L., Yu Z., Li F., Gnyp M., Koppe W., Bareth G., Miao Y., Chen X., and Zhang F. 2011. Nitrogen status estimation of winter wheat by using an IKONOS satellite image in the north china plain, International Conference on Computer and Computing Technologies in Agriculture. Springer 174-184.
15- Lamb D., Steyn-Ross M., Schaare P., Hanna M., Silvester W., and Steyn-Ross A. 2002. Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: theoretical modelling and experimental observations. International Journal of Remote Sensing 23(18): 3619-3648.
16- Land M.H., Guillermo M.A.S., Dos Santos W.R., Paioli-Pires E.J., Pommer C.V., and Botelho R.V. 2003. Nutritional evaluation of the condition of Italia grapevine in theregion of Jales, SP, using the diagnosis and recommendation integrated system. Rev Bras Frutic 25: 309-314.
17- LeeY.J.,Yang C.M., Chang K., and Shen Y. 2008. Asimplespectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agronomy Journal 100: 205–212.
18- Lelong C.C., Pinet P.C., and Poilve H. 1998. Hyperspectral imaging and stress mapping in agriculture: a case study on wheat in Beauce (France). Remote Sensing of Environment 66: 179-191.
19- Merzlyak M., Gitelson A., Chivkunova O., Solovchenko A., and Pogosyan S. 2003. Application of reflectance spectroscopy for analysis of higher plant pigments. Russian Journal of Plant Physiology 50(5): 704-710.
20- Min M., Lee W.S., Burks T.F., Jordan J.D., Schumann A.W., Schueller J.K., and Xie H. 2008. Design of a hyperspectral nitrogen sensing system for orange leaves. Computers and Electronics in Agriculture 63(2): 215-226.
21- Mirzaee S., Ghorbani-Dashtaki S., Mohammadi J., Asadi H., and Asadzadeh F. 2016. Spatial variability of soil organic matter using remote Sensing Data. Catena 145: 118-127.
22- Mutanga O., Skidmore A., Kumar L., and Ferwerda J. 2005. Estimating tropical pasture quality at canopy level using band depth analysis with continuum removal in the visible domain. International Journal of Remote Sensing 26(6): 1093-1108.
23- Mutanga O., Skidmore A.K., and Prins H. 2004. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote sensing of Environment 89(3): 393-408.
24- Mutanga O., Skidmore A.K., and van Wieren S. 2003. Discriminating tropical grass (Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry. ISPRS Journal of Photogrammetry and Remote Sensing 57(4): 263-272.
25- Nagorny V.D. 2013. Soil and Plant Laboratory Analysis. (text book): 107-110.
26- Özyiğit Y., and Bilgen M. 2013. Use of spectral reflectance values for determining nitrogen, phosphorus, and potassium contents of rangeland plants. Journal of Agricultural Science and Technology 15: 1537-1545.
27- Perry E.M., and Davenport J.R. 2007. Spectral and spatial differences in response of vegetation indices to nitrogen treatments on apple. Computers and Electronics in Agriculture 59(1-2): 56-65.
28- Porder S., Asner G.P., and Vitousek P.M. 2005. Ground-based and remotely sensed nutrient availability across a tropical landscape. Proceedings of the National Academy of Sciences 102(31): 10909-10912.
29- Rahmati M., and Hamzehpour N. 2018. Effectiveness of spectral data reduction in detection of salt-affected soils in a small study area. Desert 23(1): 97-106.
30- Samson G., Tremblay N., Dudelzak A., Babichenko S., Dextraze L., and Wollring J. 2000. Nutrient stress of corn plants: early detection and discrimination using a compact multiwavelength fluorescent lidar, Proceedings of the 20th EARSeL Symposium, Dresden, Germany 214-223.
31- Shi J., Wang H., Xu J., Wu J., Liu X., Zhu H., and Yu C. 2007. Spatial distribution of heavy metals in soils: a case study of Changxing, China. Environmental Geology 52(1): 1-10
32- Smart D.R., Whiting M.L., and Stockert C. 2007. Remote sensing of grape K deficiency symptoms using leaf level hyperspectral reflectance, Western Nutrient Management Conference 19-24.
33- Starks P.J., Zhao D., Phillips W.A., and Coleman S.W. 2006. Development of canopy reflectance algorithms for real-time prediction of bermudagrass pasture biomass and nutritive values. Crop Science 46(2): 927-934.
34- Stroppiana, D., Boschetti, M., Brivio, P.A., and Bocchi, S., 2009. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field crops research 111(1-2), 119-129.
35- Taiz L., and Zeiger E. 2010a. Plant Physiology. Sinauer Associates Inc.: Sunderland, MA, USA 5th ed.
36- Terra M.M., Guilherme M.A.S., Santos W.R.d., Paioli-Pires E.J., Pommer C.V., and Botelho R.V. 2003. Evaluation of the nutritional condition of Italia grapevine in the region of Jales, SP, using the diagnosis and recommendation integrated system. Revista Brasileira de Fruticultura 25(2): 309-314.
37- Thomas J.R., and Oerther G.F. 1972. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy Journal 64: 11–13.
38- Tian Y.C., Yao X., Yang J., Cao W.X., Hannaway D.B., and Zhu Y. 2011. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance. Field Crops Research 120: 299-310.
39- Tilling A.K., O’Leary G.J., Ferwerda J.G., Jones S.D., Fitzgerald G.J., Rodriguez D., and Belford R. 2007. Remote sensing of nitrogen and water stress in wheat. Field Crops Research 104(1-3): 77-85.
40- Wei J.B., Xiao D.N., Zeng H., and Fu Y.K. 2008. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northeastern China. Environmental Geology 53(8): 1663-1672
41- Wilding L. 1985. Spatial variability: its documentation and implication to soil surveys, Soil spatial variability. Workshop 166-194.
42- Zadoks J.C., Chang T.T., and Konzak C.F. 1974. A decimal code for the growth stages of cereals. Weed Research 14(6): 415-421.
43- Zeng X., Dickinson R.E., Walker A., Shaikh M., DeFries R.S., and Qi J. 2000. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. Journal of Applied Meteorology 39(6): 826-839.
44- Zhai Y., Cui L., Zhou X., Gao Y., Fei T., and Gao W. 2013. Estimation of nitrogen, phosphorus, and potassium contents in the leaves of different plants using laboratory-based visible and near-infrared reflectance spectroscopy: comparison of partial least-square regression and support vector machine regression methods. International Journal of Remote Sensing 34(7): 2502-2518.
45- Zhao D., Reddy K.R., Kakani V.G., and Reddy V. 2005. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy 22(4): 391-403.
46- Zhu Y., Li Y.X., Zhou D.Q., Tian Y.C., Yao X., and Cao W.X. 2006. Quantitative relationship between leaf nitrogen concentration and canopy reflectance spectra in rice and wheat. Acta Ecol. Sin 26: 3463–3469.
47- Zhu Y., Yao X., Tian Y., Liu X., and Cao W. 2008. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. International Journal of Applied Earth Observation and Geoinformation 10(1): 1-10.
48- Zvomuya F., Rosen C.J., Russelle M.P., and Gupta S.C. 2003. Nitrate leaching and nitrogen recovery following application of polyolefin-coated urea to potato. Journal of Environmental quality 32(2): 480-489.
CAPTCHA Image