دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه تهران

چکیده

نفوذپذیری یکی از پارامترهای مهم و تاثیر‌گذار در آبیاری است. به همین دلیل اندازه‌گیری و برآورد نفوذ اهمیت ویژه‌ای دارد. تحلیل سری‌زمانی یک روش کارآمد و ساده برای پیش‌بینی است، که در علوم مختلف به صورت گسترده استفاده شده است. در این مطالعه قابلیت سری‌زمانی در برآورد میزان نفوذ تجمعی در بافت‌های مختلف خاک بررسی شد. برای این منظور از داده‌های آزمایش نفوذسنج استوانه‌ای متحدالمرکز در دشت لالی خوزستان به مدت 60 و 120 دقیقه (با فواصل زمانی پیشنهادی برای این آزمایش) استفاده و پیش‌بینی تا انتهای آزمایش نفوذ انجام شد. همچنین در این تحقیق با استفاده از ضرایب پیشنهادی معادله کوستیاکوف-لوئیس توسط سازمان NRCS، داده‌‌های نفوذ تجمعی به مدت 24 ساعت برای مدل‌سازی سری زمانی برای شش بافت مختلف خاک استفاده شد. نتایج نشان داد که مدل‌های سری زمانی ARX(p,x) و ARMAX(p,q,x) با درجات متفاوت 1، 2، 3 در خاک‌های مختلف سبک، متوسط و سنگین میزان نفوذ تجمعی را برای طول مدت آزمایش نفوذ به خوبی پیش‌بینی کرد. همچنین نتایج استفاده از نفوذ تجمعی به مدت 24 ساعت نشان داد که خطای استاندارد برای تخمین نفوذپذیری خاک از 2 تا 21 درصد برای بافت های مختلف خاک متغیر بود. تقریباً همبستگی کاملی بین داده‌های تخمینی و واقعی حاصل شد. همچنین با استفاده از مدل‌سازی سری زمانی امکان کاهش مدت زمان آزمایش نفوذسنج استوانه‌ای از چهار ساعت به یک ساعت در خاک‌های مختلف وجود دارد که منجر به کاهش هزینه‌‌های اندازه‌گیری نفوذپذیری می‌گردد.

کلیدواژه‌ها

عنوان مقاله [English]

pplication of Time-series Modeling to Predict Infiltration of Different Soil Textures

نویسندگان [English]

  • S. Vazirpour
  • H. Ebrahimian
  • H. Rafiee
  • F. Mirzaei Asl Shirkohi

University of Tehran

چکیده [English]

Introduction: Infiltration is one of the most important parameters affecting irrigation. For this reason, measuring and estimating this parameter is very important, particularly when designing and managing irrigation systems. Infiltration affects water flow and solute transport in the soil surface and subsurface. Due to temporal and spatial variability, Many measurements are needed to explain the average soil infiltration characteristics under field conditions. Stochastic characteristics of the different natural phenomena led to the application of random variables and time series in predicting the performance of these phenomena. Time-series analysis is a simple and efficient method for prediction, which is widely used in various sciences. However, a few researches have investigated the time-series modeling to predict soil infiltration characteristics. In this study, capability of time series in estimating infiltration rate for different soil textures was evaluated.
Materials and methods: For this purpose, the 60 and 120 minutes data of double ring infiltrometer test in Lali plain, Khuzestan, Iran, with its proposed time intervals (0, 1, 3, 5, 10, 15, 20, 30, 45, 60, 80, 100, 120, 150, 180, 210, 240 minutes) were used to predict cumulative infiltration until the end of the experiment time for heavy (clay), medium (loam) and light (sand) soil textures. Moreover, used parameters of Kostiakov-Lewis equation recommended by NRCS, 24 hours cumulative infiltration curves were applied in time-series modeling for six different soil textures (clay, clay loam, silty, silty loam, sandy loam and sand). Different time-series models including Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA), autoregressive integrated moving average (ARIMA), ARMA model with eXogenous variables (ARMAX) and AR model with eXogenous variables (ARX) were evaluated in predicting cumulative infiltration. Autocorrelation and partial autocorrelation charts for each variable time-series models were investigated. The evaluation indices were the coefficient of determination (R2), root of mean square error (RMSE) and standard error (SE).
Results and discussion: The results showed that the AR(p), ARX(p,x) and ARMAX(p,q,x) time series models with various degrees 1, 2, 3 successfully predicted infiltration rates for duration of the test in different soils. Significant correlation between actual and estimated values of cumulative infiltration was almost obtained. The values of SE varied between 2 and 5 percent for three soil textures in Lali plain. Reducing input data from two hours to one hour did not have major impact on infiltration prediction. The results of 24 hours cumulative infiltration also indicated standard error of estimated infiltration varied between 2 and 21% for six different soil textures. Similarly, there was a very good correlation between the actual and predicted values of 24 hours cumulative infiltration. The prediction error increased with increasing prediction time (4 hours vs. 24 hours). The time-series models had accurate performances to predict cumulative infiltration until 12 hours, therefore, they would be as a useful tool to predict soil infiltration characteristics for irrigation purposes. The RMSE values for predicting 24 hours cumulative infiltration were 0.5, 2.6, 4.1, 4.9, 7.5 and 11.8 cm for clay, clay loam, silt, silty loam, sandy loam and sand, respectively. The SE values also were 2.6, 11.7, 13.9, 14.9, 17.2 and 21.6 % for clay, clay loam, silt, silty loam, sandy loam and sand, respectively. Time-series modeling showed better performance in heavy and moderate soils than in light soils. However, the performance of the time-series modeling for predicting infiltration for the double ring test with four hours experiment time was better for light soil textures as compared to heavy and moderate soil textures. Therefore, more studies are needed to investigate the capability of time series modeling to predict infiltration with more experiment data, particularly for heavy and moderate soil textures.
Conclusion: The results indicated that the experiment time of the double ring test could be reduced from four to one hour by using time series models in various soil textures and consequently the cost of soil infiltration measurements would be decreased. Using initial 120 min infiltration data, the time-series models could successfully predict the 12 hours cumulative infiltration. Comparison between the results of times-series models and actual data indicated the application of time-series models in predicting soil infiltration characteristics was efficient.

کلیدواژه‌ها [English]

  • Cumulative infiltration
  • Double ring test
  • Kostiakov-Lewis Equation
  • Time Series
1- Argyrokastritis I., and Kerkides P. 2003. A note to the variable sorptivity infiltration equation. Water Resour Manage, 17: 133-145.
2- ASTM. 2003. D3385-03 Standard test method for infiltration rate of soils in field using double-ring infiltrometer. 2-Annual Book of ASTM Standards 04,08. American Society for Testing and Materials, West Conshohocken, PA.
3- Box G.E.P. , and Jenkins G.M. 1976. Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco.
4- Dickey D.A., and Fuller W.A. 1979. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. the American Statistical Association, 74 (366): 427–431.
5- Gujarati D. N. 1999. Basic econometrics. New York Graw Hill International Edition, 838.
6- Horton R.E. 1940. Approach towards a physical interpretation of infiltration capacity. Soil Science. Society of . America Proceedings, 5: 399-417.
7- Haykin S. 1994. Neural Networks: a Comprehensive Foundation. Macmillan. New York, 340.
8- Kostiakov A.N. 1932. On the dynamics of the coefficient of water percolation in soils and the necessity for studying it from a dynamic point o view for purpose of amelioration. Trans. Int. Congr. Soil Science, (A): 17-21.
9- Loaiciga H.A., and Huang A. 2007. Ponding analysis with Green-Ampt infiltration. Hydrologic Engineering, 12(1):109-112.
10- Machiwal D., Jha M.K., and Mal B.C. 2006. Modelling Infiltration and quantifying Spatial Soil Variability in a Wasteland of Kharagpur, India. Biosystems Engineering, 95(4): 569-582.
11- Mohammadi M.H., and Refahi. H. 2005. Estimating parameters of infiltration equations using soil physical properties. Agricultural Science Iran, 36(6): 1391-1398. (in Persian with English abstract)
12- Nahvinia M.J., Liaghat A., Parsinejad. M. 2010. Prediction of Depth of Infiltration in Furrow Irrigation Using Tentative and Statistical Models. Water and Soil, 24 (4): 769-780. (in Persian with English abstract)
13- Nasseri A., Neyshabori M.R., and Fakheri fard A. 2013. Time series analysis of furrow infiltration. Irrigation. and Drainage, 62: 640-648.
14- Niromand H.A., and Bozorgnia, A. (translators), 1993. Introduction for Time Series Analysis, C. Chetfil, Published by Mashhad Ferdowsi University, 290 pp. 16.
15- Philips P.C.B., Perron P. 1988. Testing for unit root in time series regression. Journal of Biometrika, 75: 335-346.
16- Pulido-Calvo I., Rolda´n J., Lo´pez-Luque R., Gutie´rrez-Estrada J.C. 2003. Demand Forecasting for Irrigation Water Distribution Systems. Irrigation and Drainage Engineering, 129(6): 422-431.
17- Sadorsky P. 2006. Modeling and forecasting petroleum futures volatility, Energy Economics, 28: 467-488.
18- Schwankl L., Raghuwanshi N., Wallender W. 2000. Time series modeling for prediction spatially variable infiltration. Irrigation and Drainage Engineering, 126: 283-287.
19- Sy N.L. 2006. Modelling the infiltration process with a multi-layer perceptron artificial neural network. Hydrological Sciences, 51(1): 3-20.
20- Tisu P., Guitjens J., 1986. Predicting EC for drainage water management. Irrigation and Drainage Engineering, 112: 274-281.
21- Turner E.R. 2006. Comparison of infiltration equations and their field validation with rainfall simulation. M.Sc. Thesis, University of Maryland, USA, 202.
22- Unkown. 2001. Instructions of soil infiltration rate measurement using double ring. Iran Planning and Budget Organization, Publication No. 243. (in Persian)
23- Unkown. 2003. Infiltration report in Lali plain. Soil and Water Consulting Engineers. No. 25-6. (in Persian)
24- Walker W. R. 1998. SIRMOD – Surface Irrigation Modeling Software. Utah State University.
25- Weiler M. 2005. An infiltration model based on flow variability in macropores: development, sensitivity analysis and applications. Hydrology. 310: 294-315.
26- Zoua P., Yanga J., Fub J., Liu G., Li D. 2010. Artificial neural network and time series models for predicting soil salt and water content. Agricultural Water Management, 97: 2009– 2019.
CAPTCHA Image