دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشکده علوم انسانی، گروه جغرافیا، دانشگاه زنجان، زنجان، ایران

2 استاد اقلیم شناسی، دانشکده علوم اجتماعی، گروه جغرافیا، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانشجوی دکترای اقلیم شناسی، دانشکده علوم اجتماعی، گروه جغرافیا، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

بارش به عنوان مهم­ترین متغیر در چرخه­ی هیدرولوژیکی تأمین کننده­ی آب، نقش مهمی در تداوم حیات سیاره­ی زمین ایفا می­کند. پایداری اکوسیستم­های مختلف گیاهی و جانوری در حوضه­ی آبریز جازموریان وابستگی بسیار زیادی به مقدار بارش دارد. تغییرپذیری بالای بارش، تاب­آوری این حوضه را با چالشی جدی روبرو نموده است. با توجه به کمبود ایستگاه­های زمینی و پراکنش نامناسب آن­ها در این حوضه، در تحقیق حاضر به واکاوی تغییرات زمانی ـ فضایی بارش طی دوره­ی (2019-2001) با استفاده از داده­های ماهواره­ی سنجش جهانی بارش (GPM) پرداخته ‌شد. در ابتدا داده­های بارش مورد نیاز با تفکیک فضایی 1/0 × 1/0 درجه و تفکیک زمانی ماهانه، فصلی و سالانه فراهم گردید. پس از انجام پیش پردازش­های لازم در محیط نرم­افزارهای گرافیکی و آماری، با استفاده از روش­های زمین آماری نرم­افزار GIS به پهنه ­بندی توزیع فضایی بارش اقدام و در نهایت به تفسیر خروجی­های مربوطه پرداخته شد. براساس نتایج، توزیع فضایی بارش حوضه­ی آبریز جازموریان در دوره­ی آماری مورد مطالعه از 232-83 میلی­متر متغیر بوده است. بیشینه­ی بارش در بخش­های شمالی و غربی و کمینه­ی آن در نواحی مرکزی و شرقی حوضه رخ داده است. به لحاظ توزیع فصلی، مقدار بارش در زمستان 73، بهار 47، تابستان 12 و پاییز نیز 12 میلی­متر برآورد گردید. واکاوی بارش ماهانه نیز بیان­گر رخداد بیش­ترین مقدار بارش در ماه­های مارس (33 میلی­متر) و فوریه (32 میلی­متر) و کم­ترین آن در ماه­های سپتامبر (1 میلی­متر) و می، ژوئن و اکتبر (3 میلی­متر) است. به طور کلی، نتایج حاکی از تغییر­پذیری بالای بارش و حاکمیت شرایط خشک در حوضه­ی آبریز جازموریان است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Spatiotemporal Estimation of Precipitation Using GPM Satellite Data in Jazmourian Catchment

نویسندگان [English]

  • K. Raispour 1
  • B. Salahe 2
  • B. Abad 3

1 Department of Geography, Faculty of Humanities, University of Zanjan, Zanjan, Iran

2 Professor, Department of Geography, Faculty of Literature & Humanities, University of Mohaghegh Ardabili, Ardabil, Iran

3 PhD student of Climatology, Department of Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

چکیده [English]

Introduction
 Precipitation is the most important element of water level that recognizing its temporal-spatial characteristics at different scales is an important step towards better understanding and modeling of the hydrological cycle and related phenomena such as floods. Drought, landslides, snow and climate change are on a regional and global scale. Despite the large number of studies conducted in this field, there is still a lot of research need in many parts of the world for reasons such as lack of weather stations to access ground observation data and the non-uniform spatial distribution of these stations. Nowadays, with significant technological advances, including the advent of various satellites, access to a variety of precipitation data has been greatly facilitated. Among the latest precipitation products of various satellites, we can refer to the Global Precipitation Measurement (GPM) satellite data. Related to the subject of the present study, it is stated that most of the studies on rainfall in the Jazmourian catchment area have been based on station data, which due to the poor distribution of meteorological stations; it is not possible to estimate the temporal-spatial distribution of precipitation in the study basin. In this study, the temporal-spatial analysis of precipitation using GPM satellite precipitation products as one of the most important climatic parameters in the basin Due to the undeniable importance of rainfall in this basin, it seems that the analysis of variable rainfall can provide valuable climatic information to researchers and planners. To pave the way for new study platforms.
Materials and Methods
 In this study, satellite data (GPM) with a spatial resolution of 0.1 × 0.1 degrees from January 2001 to December 2019 have been used for spatiotemporal analysis of precipitation in the Jazmourian catchment. The GPM satellite provides more accurate and realistic estimates than other TRMM satellites. In this study, a calibrated precipitation product of level 3 of 6 GPM satellite versions was used. Relevant data are in NCDF format and have UTM image system with WGS84 datum, which after quality control and preprocessing, by specialized software (ENVI, ArcGIS and EXCELL) is converted into network data and data tables and the necessary outputs based on the geographical boundary of the catchment was extracted. The average monthly rainfall was extracted from the average daily rainfall belonging to each month and the seasonal average was extracted from the average of three months related to each season. Spatially, the values of each pixel are the conditions of the average amount of precipitation related to each time series (monthly, seasonal and annual) during the statistical period.
Results and Discussion
 Based on the results, the average rainfall in the Jazmourian catchment was estimated as 144 mm, the spatial distribution of which ranged from 83 to 232 mm. The maximum rainfall occurred in the northern and western parts and the minimum occurred in the central and eastern parts of the basin. Furthermore; based on the annual distribution of rainfall during the statistical period under study, the highest rainfall was in 2019 with 239 mm and the lowest with 53 mm in 2001. In terms of seasonal distribution, winter and spring with values of 118 and 88 mm, respectively, showed the highest and autumn and summer with values of 22 and 45 mm, showed the lowest values of precipitation. Also, during the statistical period under study, winter 2005 with 193 mm had the highest and autumn 2003 with 1 mm had the lowest seasonal rainfall in the basin. In addition, an interesting point is the spatial displacement of high-pressure nuclei in different seasons of the year; so that these nuclei are observed in the cold seasons of the year in the northern and western parts and in the warm seasons of the year in the southwestern and southeastern parts of the basin. The spatial distribution of monthly precipitation indicates the occurrence of the highest monthly precipitation in February and March and the lowest in May and September. Also, the monthly rainfall time series indicates the maximum incidence of precipitation in February 2001 (94 mm) and it’s minimum in January 2001 (no precipitation).
Conclusion
 Precipitation as a source of fresh water on Earth is one of the most important hydrological parameters, the importance of which is undeniable in the survival of human communities and natural ecosystems. Due to the large temporal-spatial variations of precipitation, its study seems necessary. But one of the main challenges for studying this phenomenon is the lack of ground stations as well as their improper distribution. Today, with advancement of technology and remote sensing, a diverse range of satellite data has become available to environmental scientists. In this regard, in the present study, using GPM satellite data and in the statistical period 2001-2019, the temporal-spatial distribution of precipitation in the Jazmourian catchment area in southeastern Iran has been investigated. In general, the high variability of rainfall in Jazmourian catchment in different months and seasons of the year, shows the dominance of arid and low climate in this basin. Therefore, due to the rainfall situation and its high fluctuations under climate change conditions, in the near future, this basin will face serious challenges and crises in water resources management and the sustainability of natural ecosystems. The GPM satellite data used in this study showed appropriate and expected results from the spatial-temporal distribution of precipitation in the Jazmourian catchment and showed a good correlation with meteorological stations. In general, the use of GPM satellite data in the present study is appropriate, which due to its appropriate spatio-temporal separation, gives reliable and satisfactory results. On the other hand, inadequate spatial coverage of meteorological stations and their large statistical vacuum in such a relatively large basin justify the use of this valuable and useful satellite data.

کلیدواژه‌ها [English]

  • GPM satellite
  • Jazmourian Catchment
  • Precipitation
  • Spatiotemporal
  1. Afshin Y. 2004. Rivers of Iran. Tehran. (In Persian with English abstract)
  2. Alexakis D.D., and Tsanis I.K. 2016. Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODIS data. Environmental Earth Sciences 75(14): 1077.
  3. Ali bakhshi S.M., Farid Hosseiniy A.R., Davari K., Alizadeh A., and Monika H. 2017. Statistical comparison between products IMERG and TMPA 3B42V7 in the level of three precipitation data GPM and TRMM (Case study: Kashafrud catchment, Khorasan Razavi province). Rangeland and Watershed Management, Journal of Natural Resources 69(4): 963-981. (In Persian with English abstract)
  4. Ali bakhshi S.M., Farid Hosseiniy A.R., Davari K., Alizadeh A., and Monika H. 2018. Assessment of Ground Station, GPM Satellite and MERRA Precipitation Products in Kashafrud Basin. Journal of Watershed Management Research 10(18): 111-122. (In Persian with English abstract)
  5. Cannon F., Hecht C.W., Cordeira J.M., and Ralph F.M. 2018. Synoptic and mesoscale forcing of Southern California extreme precipitation. Journal of Geophysical Research: Atmospheres 123(24): 13-714.
  6. Chavoshian A., and Katiraie-Boroujerdy P.S. 2019. Evaluation and application of different observational (land and satellite) datasets over Iran. Journal of Water and Soil 33(3): 501-520. (In Persian with English abstract)
  7. Crochet P., Jóhannesson T., Jónsson T., Sigurðsson O., Björnsson H., Pálsson F., and Barstad I. 2007. Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. Journal of Hydrometeorology 8(6): 1285-306.
  8. Dobson A.P., Bradshaw A.D., and Baker A.A. 1997. Hopes for the future: restoration ecology and conservation biology. Science 277(5325): 515-22.
  9. Emami H., Salajegheh A., Moghadamniya A.R., and Khalighiy Sigaroodi S.H. 2020. Accuracy and efficiency of TRMM satellite in estimating monthly precipitation in Gorganrood watershed. Journal of Ecohidrology 7(3): 719-729. (In Persian with English abstract)22059/IJE.2020.261641.917.
  10. Fooladi M., Mahdavi Najafabadi R., Rezaie M., and Moslemi H. 2020. Development of Jazmourian wetland management strategies with emphasis on water resources using SWOT models and WASPAS. Journal of Ecohidrology 7(1): 165-182. (In Persian with English abstract) https://doi.org/22059/ije.2020.291492.1231.
  11. Habibi F. 2001. Investigating the effects of Indian Manson on Iran. Geographical Research 39: 29-445. (In Persian with English abstract)
  12. Halabian A.H. 2016. Evaluation of spatial-temporal changes the precipitation in Iran. Journal of Engineering Ecosystem Desert 5(13): 101-116. (In Persian with English abstract)
  13. Hovmöller E. 1949. The trough‐and‐ridge diagram. Tellus 1(2): 62-66.
  14. Huffman G.J., Bolvin D.T., and Nelkin E.J., Day 1 IMERG final run release notes. 2015. NASA Goddard Earth Sciences Data and Information Services Center: Greenbelt, MD, USA.
  15. Junzhi L., Xing Z.A., and Zheng D. 2012. Evaluation of TRMM 3B42 precipitation product using rain gauge data in Meichuan Watershed, Poyang Lake basin, China. Journal of Resources and Ecology 3(4): 359-66.
  16. Iguchi T., Seto S., Meneghini R., Yoshida N., Awaka J., Le M., Chandrasekar V., and Kubota T. 2020. GPM/DPR level-2 algorithm theoretical basis document. NASA Goddard Space Flight Center, Greenbelt, MD, USA, Tech. Rep.
  17. Kiani M., Lashkari H., and Ghaemi H. 2020. Statistical - Synoptic Analysis of the Extreme Precipitation in Western Iran. Geography and Sustainability of Environment 33: 17-38. (In Persian with English abstract)
  18. Kirschbaum D.B., Huffman G.J., Adler RF., Braun S., Garrett K., Jones E., McNally A., Skofronick-Jackson G., Stocker E., Wu H., and Zaitchik B.F. 2017. NASA’s remotely sensed precipitation: A reservoir for applications users. Bulletin of the American Meteorological Society 98(6): 1169-84. https://doi.org/10.1175/BAMS-D-15-00296.1.
  19. Li G., Yu Z., Wang W., Ju Q., and Chen X. 2021. Analysis of the spatial Distribution of precipitation and topography with GPM data in the Tibetan Plateau. Atmospheric Research 247: 105259. https://doi.org/10.1016/j.atmosres.2020.105259.
  20. Lussana C., Nipen T.N., Seierstad IA., and Elo C.A. 2021. Ensemble-based statistical interpolation with Gaussian anamorphosis for the spatial analysis of precipitation. Nonlinear Processes in Geophysics 28(1): 61-91. https://doi.org/10.1175/BAMS-D-15-00296.1.
  21. Maussion F., Scherer D., Mölg T., Collier E., Curio J., and Finkelnburg R., 2014. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. Journal of Climate 27(5): 1910-27. https://doi.org/10.1175/JCLI-D-13-00282.1.
  22. Negaresh H., and Khosravi M. 1998. Principal of Geomorfology Iran. Zahedan: University of Sistan and Baluchestan.
  23. Pashaei A. 2004. Deserts of Iran and its Paleoclimatological Characteristics. Crinsley D, Publications of the Geographical Organization of the Ministry of Defense and Support of the Armed Forces.
  24. Poorzaydi A.M., Alijani B., Saligheh M., and Gerami M.S. 2019. Spatial analysis of precipitation in Mazandaran province. Journal of Applied Research in Geographical Sciences 19(52): 1-20. (In Persian with English abstract)
  25. Qin Y., Chen Z., Shen Y., Zhang S., and Shi R. 2014. Evaluation of satellite rainfall estimates over the Chinese Mainland. Remote Sensing 6(11): 11649-72.
  26. Rahimi D., Khoshhal J., and Alizadeh T. 2010. Statistical-synoptic analysis of heavy rainfall in arid regions of Iran (Case study: Kerman province). Journal of Geography and Regional Development 8(14): 51-69. (In Persian with English abstract)
  27. Rousta I., Karampour M., Doostkamian M., Olafsson H., Zhang H., Mushore TD., Karimvandi AS., and Vargas E.R. 2020. Synoptic-dynamic analysis of extreme precipitation in Karoun River Basin, Iran. Arabian Journal of Geosciences 13(2): 1-6. (In Persian with English abstract)
  28. Sadeghi H.R., Masoompour Samakosh J., and Miri M. 2019. The Evaluation of GPM Precipitation Remote Sensing Data with Observed Data (Case Study: Mid-West of Iran). Iranian Remote Sensing & GIS 11(2): 115-126. (In Persian with English abstract)
  29. Sanjari S., Farpoor M.H., Mahmoodabadi M., and Barkhori S. 2020. Comparison of Soil Taxonomy (2014) and WRB (2015) in classification of soils in Iranshahr and Dalgan Regions, Sistan and Baluchestan Province. Journal of Water and Soil 35(3): 1081-1091. (In Persian with English abstract)
  30. Satgé F., Xavier A., Pillco Zolá R., Hussain Y., Timouk F., Garnier J., and Bonnet M.P. 2017. Comparative assessments of the latest GPM mission’s spatially enhanced satellite rainfall products over the main Bolivian watersheds. Remote Sensing 9(4): https://doi.org/10.3390/rs9040369.
  31. Sharifi E., Steinacker R., and Saghafian B. 2016. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sensing 8(2): 135. (In Persian with English abstract)
  32. Shokri Koochak S., Akhond Ali., A.M., and Sharifey M. 2020. Performance evaluation of PERSIANN and CDR-PERSIANN satellite precipitation algorithms and evaluation of the effect Roughness on it (Case study: Helle catchment, Iran). Journal of Ecohidrology 7(2): 511-527. (In Persian with English abstract)
  33. Skofronick-Jackson G., Petersen W.A., Berg W., Kidd C., Stocker E.F., Kirschbaum DB., Kakar R., Braun S.A., Huffman GJ., Iguchi T., Kirstetter P.E. 2017. The Global Precipitation Measurement (GPM) mission for science and society. Bulletin of the American Meteorological Society 98(8): 1679-95.
  34. Tan M.L., and Duan Z. 2017. Assessment of GPM and TRMM precipitation products over Singapore. Remote Sensing 9(7): 720.
  35. Tang G., Clark M.P., Papalexiou S.M., Ma Z., and Hong Y. 2020. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote sensing of environment 240: 111697. https://doi.org/10.1016/j.rse.2020.111697.
  36. Tongal H. 2019. Spatiotemporal analysis of precipitation and extreme indices in the Antalya Basin, Turkey. Theoretical and Applied Climatology 138(3): 1735-54. https://doi.org/10.1007/s00704-019-02927-4.
  37. Vélez A., Martin-Vide J., Royé D., and Santaella O. 2019. Spatial analysis of daily precipitation concentration in Puerto Rico. Theoretical and Applied Climatology 136(3): 1347-55. DOI: 1007/s00704-018-2550-1.
  38. Verma M.K., Verma M.K, and Swain S. 2016. Statistical analysis of precipitation over Seonath river basin, Chhattisgarh, India. International Journal of Applied Engineering Research 11(4): 2417-23.
  39. Villarini G., and Krajewski W.F. 2008. Empirically-based modeling of spatial sampling uncertainties associated with rainfall measurements by rain gauges. Advances in Water Resources 31 (7): 1015-23. https://doi.org/10.1016/j.advwatres.2008.04.007.
  40. Wang Z., Zhong R., Lai C., and Chen J. 2017. Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmospheric Research 196: 151-63. https://doi.org/10.1016/j.atmosres.2017.06.020.
  41. Yarahmadi D., Halimi M., and Zareiy Chaghabalky Z. 2015. Spatial analysis of monthly precipitation in northwestern Iran using spatial autocorrelation statistics. Journal of Natural Geography Researches 47(3): 451-464. (In Persian with English abstract).
  42. Yatagai A., Kamiguchi K., Arakawa O., Hamada A., Yasutomi N., and Kitoh A. 2012. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society 93(9): 1401-15. https://doi.org/10.1175/BAMS-D-11-00122.1.
  43. Yong B., Hong Y., Ren L.L., Gourley J.J., Huffman G.J., Chen X., Wang W., and Khan S.I. 2012. Assessment of evolving TRMM‐based multisatellite real‐time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. Journal of Geophysical Research: Atmospheres, 117(D9). https://doi.org/10.1029/2011JD017069.
  44. Yong B., Liu D., Gourley J.J., Tian Y., Huffman G.J., Ren L., and Hong Y. 2015. Global view of real-time TRMM multisatellite precipitation analysis: Implications for its successor global precipitation measurement mission. Bulletin of the American Meteorological Society 96(2): 283-96.
  45. Yuan F., Wang B., Shi C., Cui W., Zhao C., Liu Y., Ren L., Zhang L., Zhu Y., Chen T., and Jiang S. 2018. Evaluation of hydrological utility of IMERG Final run V05 and TMPA 3B42V7 satellite precipitation products in the Yellow River source region, China. Journal of hydrology 567: 696-711. https://doi.org/10.1016/j.jhydrol.2018.06.045.
CAPTCHA Image